ECE-416: Senior Project

Automotive Diagnostic Tool

Adam Serafin
Jonathan Johnston
December 6, 2004

Senior Project: Final Report

Table of Contents

INEFOAUCTION .o e e e e e e e e e e e e e e s s e e annnnee 1.
Proposal
ADSIFACE ... ———————————— 2
BackgroUnd..........cooiiii e 4
Preliminary DESION........ccoiiiiiieecee e e e e e 5
Motorola 68k Single Board Computer
WY thE MBBK? ...ttt e e e e e e e e e e e e e e e nnnes 6
SOfWAr€@ DELAIIS. ... 7
Hardware DELAIIS..........oooeeieeiiiiieeeeeeii e e e e e e e e e e eeeeaneees 8
MB8BK SBC SChEMALIC....ccveeeeeeeeeeii ettt eeee e e e 9
Project Design
Hardware
Analog to Digital CONVEISION..........uuuuiiiiiiiiiiiiiieeeeeaeee e e 10
Analog to Digital Conversion Schematic......................... 12
SenSOr SCroll FEALUNevvvvviiieiiee e 11
Sensor Scroll SchematiC...ovveeeeee e, 13.
DC POWEN SOUICE ...t e 12
20XLLCD liNedisplayccoovvviiviiiiiiiiiiieie e eeee e 8
SENSOr SIMUIALION ... e e e 9
LCD SChemMatiC....ccoeeeeeeeeeeeeeiiiiiie e 2
Software
ASSEMDBIY Programi........cccooeeiiiiiiiiiiiee e 18
BCD CONVEISIONcciiiiiieeeiiiiiiiiissa s e e e e e e e e e e eeeeeeeeeeeeeeeeesnneennnne 34
Reading Individual SENSOrS.........uveiiiiiiiiieeeeeeieeeeeeei s ad
Processing Data...........uuuuuuummiiiiiiiiiieeeeee e 34
Program FlOW.......oooviiecccee e 23
Final Assembly Code.........coooiiiiiiiiiiiiee e 44
Visual BasiC Program.............oooeeiiiiiiiiiiiiiii e eeeeeeeeeeeeee e 13
S o = 1S 010 R 89

Conclusion

Introduction:

This report is documentation of our senior projemin its beginning to the very
end. Our project was first conceived in ECE-414clihis the project proposal component
of the Senior Project class that is required farBachelors degree in Computer
Engineering. Our project can be subdivided inte¢hparts; proposal, design, and
implementation. This report is organized similarly.

This project was fairly well rounded in the areacCaimputer Engineering. The
design involved both hardware and software. Desmttie required hardware demanded
knowledge of computer architecture, digital logind integrated circuits (ICs). In
addition, knowledge of basic circuit theory is asniAs for software design we
programmed in both assembly language and high-lamguage. Because our project is
based upon the Motorola 68000 Series microproces&owrote our program using this
assembly language. In addition, we used Visual®@aswrite software that would allow
our M68k single board computer to communicate \aitly PC.

Our project was challenging in both design and en@ntation. It took the entire
semester to complete the basic functions as weopeap As with most engineering
projects, after successful completion we have edtimany areas that can be upgraded
and improved.

Proposal: Abstract

The first automobiles relied on mechanical systemperate the engine. This
proved good for the times, but the evolution of ¢benputer would make a big change.
Modern automobile fuel and ignition systems arecathentirely computer controlled.
The ECU(Electronic Control Unit) of an automobgerésponsible for making the precise
calculations that allow the proper amounts fuddéanjected at the proper time. The
ECU also determines exactly when to fire each sphu taking into account the ignition
spark advance and retard under all engine operatinditions. The ECU obtains all of
its data through various electrical sensors. Wheargine component fails or one of the
sensors is not working properly, the engine wili fumction efficiently or sometimes, not
at all. It is difficult to determine which sensarmechanical system is not functioning
correctly because the vehicle operator does nat hagess to a unit that can display
sensor output. Our proposal is to make this aviailab

Proposal: Background

Since our project emphasizes automobile enginend&tags, we will monitor the
sensors that allow the operator or technician toptetely understand the common
problems. Examples and information of the sensersl Vike to monitor are as follows:

Intake Air Temperature(IAT) : Changes its resistance with respect to the arnhien
temperature. The temperature of the air is relaidobw dense it is. As air temperature
decreases, density and oxygen content increasesouthut of this sensor is important
for diagnosing trouble with the intake system, andalfunctioning of this sensor would
result in a less efficient operation of the engifige output that we would like to obtain is
ambient air temperature.

Throttle Position Sensor(TPS):The TPS essentially is a potentiometer that is
controlled by the throttle (gas pedal). This sensdwcated on the throttle body. Throttle
position is one of the key elements of fuel injectcontrol. A problematic TPS sensor
can result in loss of engine power. The output Wetvould like to obtain is throttle
position in degrees.

Manifold Absolute Pressure(MAP) The MAP sensor varies its voltage with respect to
the air pressure inside the engines intake manifidié MAP sensor accurately senses the
amount of vacuum in the manifold. Manifold vacuwgraigood indicator of engine load.

A malfunctioning MAP sensor can result in erratige idling, loss of power, less
efficient operation, etc. The type of output we Wblike to obtain is engine vacuum in
inches mercury (unit of vacuum) the range is 3G@scmercury to 0.

EGR System:EGR which stands for Exhaust Gas Recirculationdgséem that was
implemented in the 1980’s to produce cleaner velaahissions. The theory behind this

is that engineers have noticed when inert gadrisdoced into the combustion chamber
of the engine, NOX emissions are reduced. Howekiere is one problem, introducing

an inert gas from some outside source of the vemoluld be impractical. The solution

to this problem was to use exhaust gas as thegasrtThis was an ideal solution because
the oxygen and fuel of exhaust is almost entirpns.

The effectiveness of the EGR system is achievethbgfully metering exhaust
gas into the intake manifold through a variablesgall his valve is vacuum controlled by
a diaphragm which in tern is controlled by a soldraztuator. To ensure that the EGR
system is working properly, modern manufacturerpleyna EGR Valve Lift sensor. The
EGR lift sensor is used to send an analog sigmaésenting valve lift to the ECU. The
ECU then compares this actual valve lift to theoedtvalve lift. If the two values do not
agree then the system is not working properly wieh result in a “Check Engine” light,
poor running conditions, and finally increased esiigss. Because this system is so

important to the clean operation of an engine,@rdmon engine trouble, a read-out of
this sensor information would be extremely valuabla technician.

Coolant Temperature SensorsThe coolant temperature sensors used in modern
vehicles are what are known as thermistors. Thisn®¢hat it varies its resistance with
respect to temperature. Coolant temperature seasdi great diagnostic value because
they can detect cooling system problems. Coolanpé&sature sensors also allow the
computer to adjust its fuel map according to tmepgerature. The output we would like to
obtain is coolant temperature.

Proposal: Preliminary Design

In our project design we will use the 0808 Analoddigital converter. This chip
contains 8 converters which will allow us to convbe analog sensor outputs into the
binary data we need to complete the calculatiors Wil also need the Motorola 68k
Single Board Computer. The M68k SBC is a SinglerB&omputer that we have
constructed together previously. The price todaiie is around $150. We will get an
LCD display (about $30) and connect it to the SB@dve a better and easier to read
display screen. The M68k will provide sufficienbpessing power to provide a real-time
display of sensor information. We will have to prag the M68k in assembly language.
The programming is crucial because it will contidie algorithms that will obtain the
proper conversion data in a lookup table that belistored in the SBC’'s ROM. Our
interface will also allow the user to toggle thrbuge different senor outputs. We are
thinking of also making the interface toggle acoagdo a set timer. Lastly, we want to
take the serial port of our SBC and connect it RCa This will allow a user to do
further, more powerful analysis of the sensors@edte a more user friendly, GUI
interface. This part of our project entails knadge of the C++ programming language
and how the serial port of the SBC transfers infttian to the PC.

As of now the SBC is dependant on a 120VAC souiéewould like to create a
power supply for it that will take advantage of theomobiles 12-13.5VDC system
conveniently available through the cigarette lighfénis will make our project
completely portable, unlike the expensive diagrmostjuipment. This offers an advantage
of diagnosing problems when the engine is in higharacity conditions.

The first step in designing our project is obtagnihe desired senor outputs that
we want through the engine’s electrical systemsifitulate analog sensor outputs we
will use 100k ohm potentiometers that will conniecthe 8 analog inputs on the analog
to digital converter. The next phase of projectiglesvill be the configuration of the
analog to digital converter within our M68k SBC.igkonfiguration will be somewhat
complex because we want the user to be able tdetdiggpugh all of the different sensor
outputs. This design of this will probably use 8 Becoder and a 4-1 Multiplexer. The
next step of the design is writing the code in addg language that will convert the
binary data obtained from the analog to digitah@ter. The conversion of this binary
data is needed in order to obtain values correspgrid what the sensor is sensing. We
will use a lookup table in the ROM of the SBC thait correspond binary values with
actual data. Once this data is obtained, we wiibouit to an LCD display. This will
allow the user to know what the sensors are ouiyutt

The final phase of our project design would baterface the SBC to a PC. This
will involve programming in both C++ and assemtanduage.

Motorola 68k Single Board Computer: Why the
M68k?

To implement our project, a microprocessor is Bsagy to receive, process, and
output data in a carefully structured manner. Beeauve studied the design of the
Motorola 68k, and built an SBC around one in tw@of undergraduate courses; using
the M68k SBC in our project was a logical step.

Our SBC has many desirable features for this ptojeey include: serial I/O,
RAM, EEPROM, parallel I/O, room for expansion, antasic operating system. Serial
I/0O is necessary for our project because of thel b@éransmit/receive data with a PC.

The RAM would allow us to store programs on the SB& were downloaded
via the serial port. This is very important for tsedre testing; imagine re-burning an
EEPROM every time you made a change to your sofwahe EEPROM would serve
as the storage for the final version of our sofevdarallel Input is necessary, and was
used to implement the sensor scroll feature ofpooject. Parallel Output was used to
output data to our Parallel LCD display and an Ug&D display. Room for expansion was
a major benefit since we would have to add addidi®® to our system. The use of a 3-8
Decoder for the addressing logic in the desigmef3BC allows us to add up-to 4
additional I/O devices with relative ease. Thid wilme in handy for the sensor scroll
feature and addressing the Analog to Digital Coterer

The final and perhaps greatest asset of the M68kK 88s the monitor program
designed by Professor Rosenstark. The monitor arogrhen stored on the system’s
EEPROM allows you to download programs to the SB@a#ly. This is a great way to
debug software on the actual system which is nacg$s accomplish things an emulator
cannot possibly handle. An example of this is teedto run programs on the SBC to test
and debug the LCD display, or the Analog to Dig@alnverter.

Motorola 68k Single Board Computer: Software
Details

In a class called ECE 252 we studied the instroctet architecture of the
Motorola 68000 series microprocessor. This clasgttaus to write and emulate
assembly level programs using two programs cake68k.exe and emu68k.exe. Both
of these programs are written by the author otél&hook used in ECE 25Zhe 68000
Microprocessor: Hardware and Software Principles and Applications Fourth Edition,
James L. Antonakos.

Asm68k.exe is an assembler, this means it is a@noghat converts assembly
op-code into machine code. Machine code is thedeoimal equivalent of assembly op-
code that is stored into the memory system of B€ 8nd is executed by the processor.
In addition, asm68k.exe had advanced features#rapick up syntax errors, and create
a .Ist file that show addressing and disassemlily alethe assembly op-code. A .Ist file
can be opened with any text editor, namely notepadwhich is available on every
Windows PC.

Emu68k.exe is an emulator that allows the prograntmexecute programs that
were designed to run on the Motorola 68k on anyelar PC instead. Emu68k.exe was
extremely valuable in our software design becalakowed us to work efficiently. This
holds true because it is much quicker to modify st programs using the emulator
then it is to use the SBC. One could test and debograms on any PC without having
to carry the SBC everywhere, and it is quickelei the program in an emulator using a
DOS prompt then it is to download a program toSB£ with a serial communication
program. While the emulator may be more convenieastill cannot replace the
hardware of the SBC because quite a few thingsetetbe tested with I/O that would
be difficult or impossible to emulate in some cases

Shown below is a simple program written in Motor68k Series Assembly
language to give you a feel on how this is done 3émicolon *;’ is used for comments.

Org $8000 ;start at first location in RAM
Prog move.b #$FF,dO ;moves byte $FF into data regi ster
Trap #9 ;interrupt request
End prog ;ends program

This program should be written in notepad becaitlisefliee of any text formatting
characters unseen to the user. This program mussvezl with the file extension of
‘.asm’ in order to be used by the assembler. Tis¢ $tep in running this program is
converting the opcode into machine code using ake&8. To do this you must obtain
this program abttp://www.sunybroome.edu/~antonakos_j/68ktoc.htRillace this
program into a directory. Use a DOS prompt to axties directory and type “asm68k
filename”. The assembler will then assemble theeditd create a .hex file that contains

the hex code needed. In order to run the prograng tise assembler you must obtain
emu68k.exe from the address above, put this fikedirectory, access this directory in
DOS, and type emu68k filename. The emulator wddloat this point type ‘g’. The
program will then execute.

To run this program on the SBC itself you must ses@al communication
software such as “hyperterminal”’. Open this progset these parameters: baud rate to
38400 bps, no stop bits, no parity bits, and nallware. Once these parameters have
been set the software will now be in communicatatth the SBC’s monitor program.
Now reset the SBC using the reset button, typatlthe prompt, from the menu select
“send text file,” select filename.hex of the pragrgou want to run and click “send.” The
hex code will transmit, after this is done preseeand type in ‘g’ to run the program.
The program has now been executed

Now that the basics such as writing a progranotepad, assembling, and
executing the program in an emulator and on the B8 been covered, you will have
an easier time understanding the assembly softwarenation detailed in this report.

Motorola 68k Single Board Computer:
Hardware Details

The ECE 252 and ECE 395 supplementary manuate aiRL:
web.njit.edu/~rosensta provides in depth documenntadf the hardware details of the
Motorola 68k SBC. Below are the basic principleshaf organization and architecture of
the SBC that are required to understand our projesign.

The addressing logic generated from the high aaddress pins of the CPU is the
heart of understanding the function of the SBCsihaplify matters the SBC was
designed using a 3-8 decoder to generate the ailiydegic. The 3 high order address
bits are input into the decoder which allow up ten8que outputs. In technical terms this
is known as high-order interleaving. When studtbd,schematic illustrates the principle
of addressing, for example when the three highrarddress bits are 000 the first output
of the decoder is selected, this output when esahke EEPROM chip. Therefore the
first location of EEPROM is at $00000h. Now consittee second output on the decoder
if you trace the schematic it leads to the Chipla&E pin of the RAM chip, this output
is asserted when the 3 high order address bit8tdreow illustrated with the other
address pins starting from A17-A0:

00(1000)(0000)(0000)(0000)
=$8000h

Therefore the starting address of the RAM is $80QBting this method you will
arrive with $10000h as the starting address oBSigal Port, $18000h as the starting
address of the Parallel Input/Output port. You wdlice that sel4 and sel5 are not used
but when considered, these addresses will be $20800 $28000h respectively. This is
important to note because these two addressebevilsed for our project.

Other interesting hardware details of the M68k SB€that it has an 8 bit data
bus, a system clock speed of 9.8304 MHz, a binpple counter that divides the system
clock into lower frequencies for the operationiod serial port interface, and several
unused logic gates. Another point worth mentiongtie reset circuit design. This
design uses a SPST momentary push-button swittiodeeed using a 330ms RC time
constant and Schmitt-trigger inverter. By inher@esign the Schmitt-trigger inverter
ensures a cleaner more “square” pulse.

The aforementioned hardware features of the SBQecessary to understand the
implementation of our hardware design. Additiomabre advanced documentation of the
M68k SBC design can be found at Professor Rosdestaebsite (listed above)

Motorola 68k SBC Schematics:

L T

B B0 0ER T

=I TEDSH

5 G R B 2% b
IR E D

1

AN

Ea

VSN BRI 4 ST | S
THMUSETS SL WO

S
Inl
m
i
2
&
m
R
EF
§E
£t
iF
EES
=Eg
Y
2k
fEE
jiE
2%
EBC

THT-:

"
—
m

i

-

:"’i [e

sovmpy oy pesnun

(RERR Rl LLE]

+++++++

lié

L [LF]

e yrdu

Hardware: Analoqg to Digital Conversion

Almost all physical occurrences are analog. Thesuns that they are continuously
variable, or measurable. Examples are length, widthage, pressure, temperature etc.
This applies to an engine’s operating conditionwek. The ECU, as explained earlier
has many decisions to make in order to succesdftdlyhe spark plugs and fuel
injectors. The ECU bases these decisions on itgsnmuch like humans base their
decisions on their inputs, i.e. eyes, ears, tésteh, and smell. In order for an ECU to
make decisions based on the inputs it must prabessformation. For an ECU to
process this analog data, it must first be condeidea binary value. Our project follows
these same guidelines.

In order to make the conversion, we will use dit&nalog to Digital converter,
namely the ADC0808. The ADC0808 can access updifféent analog signals via
three address pins and one address latch enabl@mie the address has been set on the
three address pins the address latch enable pinbaymilsed high in order to “latch in”
the new address. It is this process that selectsufh to 8 analog inputs.

SELECTED ADDRESS LINE

ANALOG C B A

CHAMMEL
IND L L L
IN1 L L H
IN2Z L H L
IN3 L H H
IN4 H L L
INS H L H
ING H H L
IN7 H H H

To integrate the converter into the SBC’s systechitecture several steps must
be taken. The first step is to wire the 8 data pitsthe data bus on the SBC. Next, for
continuous conversion START and EOC on the conventest be wired together. Vcc
and Vref+ must be wired to +5V, by contrast VrafdaGnd pins are wired to ground.
The address latch enable is supplied by the owtipihie Schmitt-trigger inverter used by
the SBC'’s reset circuit. This means that ALE wél iulsed whenever the reset button is
depressed, the reason for this will be explaingtiénSensor Scroll section of this report.
The three address pins on the converter will bedvio the output of a latch we added to
the system. The explanation for this is in the Se8&roll section as well.

The ADCO0808 requires a clock input in order to dawersions on analog data.
We originally supplied this clock signal from thBS's existing binary ripple counter.
However, the frequency was much too high and redutt data that seemed very
unstable. To remedy this we obtained another birippfe counter and used the MSB on
the original counter to drive the CLK input on tiext counter. By doing this we
effectively obtained a slower, more reasonableueegy (2.4kHz) to supply our
converter with.

Finally the last step of successfully integrating ADC0808 into the SBC is
generating the output enable signal. Because sterayarchitecture of the SBC uses
memory mapped I/O we must enable this chip usinyessing logic. To do this we will
use the fifth output of the 3-8 decoder locatedhenSBC. Because the outputs of the
decoder are active low we must invert this sigsahg an un-used Schmitt-trigger
inverter (74LS14). The output of the inverter cawrbe input to the “output enable” pin
on the ADC0808. The address of the ADC0808 is nB@0B0h. To illustrate this below
is a simple program that reads from the converidnarites to the output port ($18000h)

Org $8000
Prog move.b #$20000,d0 ;move from converter to dO
move.b d0,$18000 ;move from dO to output port
bra prog ;branch always to ‘prog’
trap #9
end prog

The above program is an infinite loop that contumly reads from the converter and
outputs to the output port.

ADCO0808 Pinouts:

[TER E 2Bz
Fd=f3 2T =1
=3 26—m0
HE—]4 25l—ADD &
MY =5 L] o E
START =i 25— akD &
Eoc—{7 2zf—aLE
[21—2""uzE
CUTPUT EMABLE={4 =it
cLot—4in 18f=2?
Yoo =f11 18f=2"
Vi) —{o2 17—2""s8
=i 16 =)
2T s 18f=2F

nSsSaEIn

Analog to Digital Conversion: Schematics

To Potentiorneters

To Fim 3 on SRS 4020

+

)

Ow

mrmm My e 4
o

La PO

W

O7=no

3

O - (0 o rp =

ay
™
[
a

D

T4l w14

oo me 3 TIs

Tn dpwn- Yoval Ledcn

O M| aEs

Ta Fin 42 on 7Hald

Hardware: Sensor Scroll Feature

The sensor scroll feature allows the user to ®gglough different sensor outputs
by the push of a button. The button used to accsimghis is the reset button. As
described in the hardware description sectioneketrbutton on the SBC is a SPST
momentary pushbutton switch. The reason why weheseeset button to toggle through
states is because its simple, shortens the ambuoontle need to be written, and acts as an
interrupt.

To implement this design a storage device is ndéer this purpose we used a
d-type latch. We wired three input pins of the late the data bus of the SBC, the three
output pins are wired to the input port of the SBG4d ADD A, ADD B, and ADD C in
parallel. The CLK signal of the latch is generdbgdhe addressing logic of the SBC. We
used the sixth output of the 3-8 decoder. As withdonverter, we needed to invert this
signal using an unused Schmitt-trigger invertere dhtput of this inverter is wired to the
CLK pin on the latch. The latch is addressed aD$P8. See the schematic for an
illustrated view.

The reason why we used a latch is that once thjegiris powered up the latch
will contain $00 which means that the convertet té reading from the®lanalog
sensor input. In our main program we read from eskl$18000h because this address
contains the value of the latch. We then storewaise into a register, add 1 to this value
and write the result back into the latch. The cmdenplement this is shown below:

Move.b #$18000,d0 ;reads from input port
Addi.b #1,d0 :adds 1 to the value
Move.b d0,$28000 ;writes value to latch

When the % line of the above code is executed the latch dosithe previous
value+1 this means that the address pins on theecim also contain the same value.
However, the present value of the address pinB®@dnverter are not being used until
the Address Latch Enable pin is pulsed. Therefaredhe reset switch is depressed the
present value will be latched into the converteawNhe process will repeat itself in a
way that every time the reset switch is pressezn#gxt converter input will be read.

The sensor scroll feature is very important toukefulness of our project and
takes advantage of the converter’s ability to reach 8 different sensors. While
functional, it is also simple in that it is actiedtby the push of a single button.

Sensor Scroll Hardware Schematic:

SENE0R BCROLL HARTWWARE SCHERIATIC

—

iy P To m |_
4 =
™,

TALE14

oo oo

10O INFUT FORT

o 7

02 aig
L
S
3
Clk 7
3

Gnd WO

TO ADCIE0E

ADD A

&00 B

ALD G

3

Hardware: DC Power Source

The SBC was initially powered by a 120VAC sourcat thas stepped down,
rectified, and cleaned to +5VDC. This was donegsirstandard 120VAC in +5VDC out
power supply. Because the average car does nolysl@pVAC and we want our project
to be completely portable, we had to find a wagdonect into an automobiles DC
voltage system. To do this we simply used a ATA640IBage regulator IC. The reason
why we chose this IC is because of its low powerscmnption, use for automotive
applications, and thermal overload shutdown. T@isslvital to regulate the unstable 12-
14 VDC supplied by an automobile’s electrical syst&or ease of use, our project can
be plugged into a vehicle’s cigarette lighter dutle

This feature is extremely important because itvadlohe user to diagnose/monitor
engine operating conditions on the road. This i&athgeous because most problems do
not reoccur in the confines of a garage bay. Fumibee this allows our design to be
completely portable.

Hardware: 20x1 LCD Line Display

The LCD we have decided to use is a parallel 2ixlLCD. There are only
fourteen pins needed for the LCD. The Hitachi HE8@U controller chip is integrated
onto the LCD chip. The pin numbers and functiomsas follows:

Terminal functions

Pin No. Symbol Function

1 Vasg Ground

2 Vdd Power supply for logic
3 Vo LCD control voltage
4 RS Register selection

) R'W Read / Write

6 E Enable signal

7 Da Data line

B D1 Data line

9 D2 Data line

10 D3 Data line

11 D4 Data line

12 D35 Data line

13 Do Data line

14 D7 Data line

We connected pin 3 to a potentiometer to createngrast knob for the LCD screen. Pin
5 goes to ground because we are only writing tstheen, never reading. Therefore we
constructed our assembly program so we only woithé LCD and never read from it.
Pin 4 is connected to address line 2. This piglegbetween the write function of
characters to the LCD and the operation functidrieeLCD screen. If the pin is high,
the LCD is in character writing mode and operatigiting mode if low. The address of
writing mode is $18002, the address of operatiativg mode is $18000. Pin 6 is
connected to the enable pin on the 74LS373 chifh@®BC. This pin is pulsed to
enable the LCD.

The Hitachi chip on the LCD board allows 5x8 of8sized characters. It also
allows an 8-bit operation, 8-digit x 1 line display4-bit operation, 8-digit x 1 line
display, and an 8-bit operation, 8-digit x 2 linepday. Because the Hitachi has these
choices, we needed to do a function set to telHitechi chip what type of display we
are using.

Execution Time

_ e (max) (when f_, or
Instruction RS RMW DBT DB6 DBS DB4 DB3 DB2 DB1 DBO Description T is 270 kHz)
Write data 1 0 Write data Writes data into DDRAM or AT us
to CGor CGRAM. tamo = 4 pa®
DDRAM
Read data 1 1 Read data Reads data from DDRAM or T us
from CiG or CGRAM. Lo =4 pa”
DDRAM
D =1: Increment DDRAM: Display data RAN Execution fime
D =0: Decrement CGERAM: Character generator changes when
S =1 Accompanies display shif RAM frequency changes
SIC =1: Display =hift ACG: CGERAM address Example:
SIC =0 Cursor move ADD: DDRAM address When f, or fogz is
RIL =1: Shift to the right (commesponds to cursor 230 kHz,
FiL =0: Shift tothe left address) 97 s x 270 _ an e
DL =1: 8hits, DL =0: 4 hits AC: Address counter used for =’ M5 35g T H
M =1 2lines, N=0: 1line both DD and CGRAM
F =1 5=10dotg, F=0: 5= 8 dot= addresses
BF =1: Internally cperating
BF =0: Instructions acceptable
Mote: — indicates no effect.

* After execution of the CGRAM/DDRAM data write or read instruction, the RAM address counter
is incremented or decremented by 1. The RAM address counter is updated after the busy flag
turns off. In Figure 10, £, s the time elapsed after the busy flag tums off until the address
counter is updated.

Clear
display

Fetun
hiame

Entry
mode set

Display
on/of control

Cursor or
display shift

Funcficn sat

Set CGRAM
address

Code

Code

Code

Code

Code

Code

Code

RS RW DBY DBE

035 DB4 DB3 DB2 D31 DEO

0 0 0 0

0 0 0 0 0 1

RS RW DB7 DBE

085 DB4 DB3 DB2 D31 DBO

0 0

(=)
=)

RS RW DB7 DBE

D85 D54 DB3 DBz D31 DBO

0 0 0 I -

RS DBY DB6

D85 D54 DB3 DBz D31 DBO

0By DBs6

DB> OB4 DB3 D32 DB1 DBO

=
(=)
=]
=]

SIC|RIL| * =

RAW DB7 DB

DB> OB4 DB3 D32 DB1 DBO

=
(=)
=]
=]

1 DL [N

RAW DB7 DB

DB> DB4 DB3 DB2 DB1 DBO

=]
(=)
=]
-

alalalalala

Lower
order bit

Higher
arder bit

Mote: *Don't care.

Mote: =Don't cars.

Once again the LCD is addressed to 18000 on taglbdSince the RS pin is
connected to address 2, at address 18002, therRS Iigh and at 18000, the RS pin is
low. We decided to not display the cursor becatfitke rapid change in position. Since
we decided to ground the R/W pin, the SBC canred the busy flag of the LCD. The
SBC operates at a system clock many times higleer tthat of the LCD circuitry. This
can cause problems in the character writing andatip@ performing because the SBC
may go to the next instruction before the LCD issined with the instruction. To fix this
problem, we wrote a delay function in our program.

delay move.b #6,d1 ;This moves the number 6 to d1

delayl move.b do,(a0) ;This moves dO to address a0
subq.b #1,d1 ;This subtracts 1 from d1
bne delayl ;Ifdl # 0 then it goes to delayl
rts ;This returns back to where it

jumped from

The LCD is initialized when the power is turned bowever, we are using the
reset button as our toggle button so we need taaigninitialize the LCD. To do this,
we followed this flow chart and programmed accogtlin We also used this
initialization sequence in the beginning of ourgram.

init movea.l #$18000,a0 ;setsthe RS to 0, puts add ress in
a0
movea.l #$20000,al ;sets the potentiometer to al
move.b #4,d2 ;moves number 4 to d2
init2 move.b #$30,d0 ;moves HEX 30 to dO (sets to 8 -
bit,1 line,
;5x8 dot)
bsr delay ;jumps to the delay
subq.b #1,d2 ;Subtracts one from d2
bne init2 ;if d2 isn’t O then it goes back
move.b #$01, dO ;moves HEX 01 to dO (clears the
screen)
bsr delay ;jumps to the delay
bsr delay2 ;does an extra delay because
clearing takes
;longer
move.b #$0E,dO ;moves HEX OE to dO (sets cursor
shift,
;decrement)
bsr delay ;jumps to delay
move.b #$0C,d0 ;moves HEX 0OC to dO (turns cursor
off)
bsr delay ;jumps to delay
bra readl ;jumps to start of program
delay2 move.w #$FFFF,d1 ;moves HEX word FFFF to d1
move.w #$FFFF,d2 ;moves HEX word FFFF to d2
delay3 subqg.w #1,d2 ;subtract 1 from d2
bne delay3 ;if d2 isn’'t 0 goes to delay3
delay4 subq.w #1,d1 ;subtracts 1from d1
bne delay4 ;if dlisn’t O goes to delay4

rts ;returns to jumped spot

{ Power on]

Wait for more than 15 ms Wait for more than 40 ma
after Ve nses tod 3V after Voo rises to 2.7

RS RAWDE7 DBS DBS DB4 DB30E2 DB 1 OBO | BF cannot be checked before this instruction.

o 0 001 1 = = = =

Wait for mors than 4.1 ms

Function set {Interface iz 8 bits long.)

RS RAWDST DES DBS DE4 DE3 DE2 DB1 OBD BF cannot be checked before this instruction.
0 0

0 0 1 1 = = = =

Wait for more than 100 ps

Function et {Interface iz 3 bits long.)

RS RAVDET DBS DBS DB4 DES DE2 DE1DED BF cannot be checked before this instruction.

o 0 00 1 1 = = = =

Function set {Interface iz 8 bits long.)

BF can be checked after the following instructions.
When BF iz not checked, the waiting time betwesen
instructions is longer than the execution instuction
time. (See Table 6.)

Funciion et {Interface is 3 bits long. Specify the

RS RANDST DBG DBS DB4 DB3 DB2 DB1 DB number of display lines and character font.)
0o 0 0 o0 1 1 W F = = The numiter of dizplay lines and character font
0 0 0000 10 0 0 cannct be changed after this point.
0O 000 0 0 0 O 0 1 Display off
0 0 0 0 0 0 0 1 WD S Display clear
l Entry mode st

nitialization end=

The character chart of the Hitachi is very simitathe ASCII chart. The HEX
values for numbers and letters are exactly the sarhe HEX for symbols may be
different. Since the HEX values for numbers agedhme for Hitachi and ASCII, we
were able to use an algorithm to convert the &ia into the HEX value needed to
display a number on the screen. The Hitachi charabart is shown below:

2

I

H
¥

ol

x|
iq

H

=L
FE

=)

J¥

j

|
|
-

Z|glB

3

=3

o | FIF|G

a7

1 [TEE 0w
- | Ik

« [FF1
27

?*5?
FlElE A

T J 1]

I dnl-

M eE0* |»

ol
al AR
=J1sb dilly

Plcialls] |

T im|

HaF [P

1 AR al«
T ERBF

L IENEEE

F/4 DTt

~5EUeu

AL L

" S]] S

ClaH[Rh[x

I IN1]g

N EEIF-
+ 5 ELk]Y
[L1]

. A M R
1720 _alE

L1
Bite| 0000 [Q001 | 0040 | 00499 | 0900 [0409 | 0990 | 01494 [1000 | 1004 {1090 | 1099 [1900 [1901 | 1110 [1111

SEES x|] = = b= == = x| 2 = 1] © = ==
= — = — = — = — o] — [] — = — = —
=] [— — == [} — — =] [— — == [} — —
[} [} [} [} — — — — [} [} [} [} — — — —
=] =] =] =] [[]] — — — — — — — —
s s s s - - - - s s s s s s - s
i i o L i i i i il il i i o L i L
i, o, a, 4 E E i, i, Ed Ed i, o, a, 4 E 4

Hardware: Sensor Simulation

In our project, we needed a way to simulate tgeads that the car sensors would
send. We decided that using 8-100k ohm potentieraetre the best solution because a
potentiometer is an analog signal that varies Itage.

The potentiometers that we are using have threetpibe wired.

IMO-IMT on ADC
0

+54

GROURND

GND +5V
Wiper

The wiper of each potentiometer is connected tatiaog input pins on the
ADCO0808. The A/D converter chip can receive upitght analog signals. Each Out pin
of each potentiometer is wired to the In0O-In7 (@RS, and 26-28) pins of the A/D
converter.

LCD Schematics

To Data Bus D/7-D0

i

Pot. Wiper +5V GND

Al GND

PIN 11 on SBC 74ls373

Assembly Program: BCD Conversion

One of the most important subsystems of our ptageto output data to an LCD
screen. Suppose | want to send the number 25% o@D screen. In order for this to
work | would have to send ‘2’ ‘5’ ‘5’ (when the clacters are in quotes assume it's the
ASCII equivalent of that character). Simply statealy one character can be sent to the
screen at one time. In order for this to occur, s@mcessing must take place, it is
known as binary to BCD conversion. If we were towert the number 255 the following
steps would have to take place:

255+1002 Remainder 55
55+10-5 Remainder 5
5+1=5 Remainder O

As you can see from the bold type the number&'25’ are isolated from the
original 255. This is the only way characters carsént to the LCD screen, one at a time.
A final operation must be done on this data, beeafishe ASCII standard a bias of $30h
must be added to each character being sent teatbersso
(2+$30)

(5+%$30)
(5+$30)
will yield 255 written on the LCD screen.

The code to perform such an algorithm is descrdisale with the addition of
deleting most significant zeros from the 3 numlieng, and returning the cursor back to
the start position (reset).

go cmp.b #99,d7 ;check if lower then 100
bls showdec ;if so branch to showdec
move.b #1,d3 ;ifnotsetd3flagto 1

showdec move.w d7,d6 ;copy string into register D6
move.w #100,d5 ;store 100 devisor
bsr dodigit ;branch to dividing algorithm
move.w #10,d5 ;store 10 devisor
bsr dodigit ;branch to dividing algorithm
move.b d6,d1 ;copy d6 into d1
addi.b #$30,d1 ;add ASCII bias
bsr delay ;send to screen with delay

reset movea.l #$18000,a0 ;set operation mode for L CD
move.b d2,do ;move LCD start add into LCD mem.
bsr delay ;send to screen with delay
bra read ;return to main function

dodigit andi.l #$ffff,d6 ;clear upper word of d6
divu d5,d6 ;divide string by devisor
move.b d6,d1 ;copy d6 into d1
addi.b #$30,d1 ;add ASCII bias of $30h
cmp.b #1,d3 ;check d3 flag
beq do ;If equal branch to send char
cmp.b #$30,d1 ;if not equal send go to do

bne do

move.b #$80,d0 ;send blank space to screen

bsr delay ;send with delay

bra do2 ;go to do2 procedure
do move.b d1,do ;send to screen

bsr delay ;with appropriate delay
do2 swap dé ;get remainder

rts ;return to original routine
If traced through properly you will find that the a bove algorithm takes
up to any 3 digit number, separates each character to send to the
screen separately, removes any most significant ‘0’ characters, and
resets the cursor to a start position. This start p osition is different
for every sensor string. For example, the start pos ition for the
following string: “The number is=xxx” is address 14 . The string “The
xxX is right” has a start position of 4. It is vita | that the cursor
return to the proper start position or the LCD disp lay will not

function properly.

Assembly Program: Reading Individual Sensors

The code to read from each sensor and outputrtpepdata is vital to the
operation of our project. Each sensor has its oata do to speak. To illustrate this
consider this chart:

Sensor Data from
input $18000
1 000
2 001
3 010
4 011
5 100
6 101
7 110
8 111

Because such data exists it is possible to checHaka from $18000h and perform an
address jump that corresponds to a subroutineetmins the data processing for each
sensor. The code for this is shown below:

readl move.b $18000,d7 ;store data from 18000reyister d7
move.b d7,do ;copy d7 into dO
addi.b #1,d0 ;adds one to dO (for the next sgnso
move.b d0,$28000 ;writes this to the latch
movea.l #$18002,a0 ;changes to character writeemod
movea.l #$8300,a6 ;address index into a6
mulu.w #$4,d7 ;multiply by 4 compensates for 4dging instr.
adda.l d7,a6 ;adds address d7 to index
jmp (ab) ;jumps to index
org $8300
bra tps ;once the jump is made
bra map ;the branch to separate subrountines
bra templ ;to handle processing/LCD info can bdema
bra temp2
bra 02
bra iat
bra null
bra rand

Once the jump has been made the processing/reigieharacters to send to the
screen is trivial. How this is done is shown in thain program.

Assembly Program: Processing Data

Raw data from the sensor output or potentiometerst be processed into
information that can be comprehended by humanstder to do this a sensor
characteristic must be found, and the math procegssist be done to approximate this
characteristic. Below is an example taken fromdbée that processes the TPS sensor.

tps movea.l #tpsd,a3 ;sets address for TPS charafdento a3
movea.l #tpsa,ad ;sets address for TPS math mioges
move.b #8,d3 ;sets the amount of charactersligitvritten LCD
move.b #$84,d2 ;sets return address of cursor
bra loop ;branches to character retrieving/sdgdrithm
tpsa move.b #$FF,d1 ;approximation of sensor peegormed on d7
sub.b d7,d1
mulu.w #%$6,d1
divu #17,d1
move.b di,d7
andi.l #$ff,d7 ;clear everything but lower byted7
bra go :branches to BCD algorithm
loop move.b (a3)+,d0 .fetches TPS characters
bsr delayl ;branches to a delay routine
subqg.b #1,d3 ;loop decriment
bne loop
bra reset ;LCD address reset routine
error move.b #$45,d0 ;if there is an error
bsr delayl ;this routine will be called
move.b #$72,d0 ;and type ‘Err’ to screen
bsr delayl
move.b #$72,d0
bsr delayl
bra reset ;LCD address reset routine
org $8350
tpsd dc.b 'TPS=',$80,%$80,$80,%df ;here is the londor TPS char info

The above subroutines are what handle charactdr, fe¢énd, delay, reset, and
processing of the signal into useable data. Suioesitioop”, and “error” are universal
for all the sensors, subroutine “loop” fetches¢haracters and sends them to the screen,
“error” notifies the user of a sensor error. Suliri“tpsa” handles the math, subroutine
“tps” handles setting certain flags used for fatghtharacters and resetting the cursor.

Assembly Program: Program Flow

To someone that is unfamiliar with assembly languaage, it would be difficult
for them to understand the program flow of our lfijprdgram. The program structure is
as follows:

1. Initialization routine to clear LCD display

2. Read from the latch to determine which sensor ilsgoaccessed

3. Write to latch for the next sensor to be accesfted the reset press

4. Branch to subroutine that handles the sensor lsiogssed

5. Set flags such as character fetch data, and creset information

6. Write characters for the current sensor to theescre. “TPS=xxx Degrees”
7. Read information from analog-digital converter fioe current sensor

8. Process information into useable data using sersacteristics

9. Perform the BCD algorithm/MSB zero deletion algmit

10.Gotostep 7

Additional Rules:
* Any information/initialization data send to the LGDBreen must be
accompanied with a delay.
* The program, when executed, is infinite, it doestop until the reset
button is pressed.
* When the reset button is pressed the program metarstep 1 of the basic
program flow.

Assembly Program: Final Assembly Code

Below is the fully commented final assembly codedion the SBC through serial

port communication.

org
init lea
movea.l
movea.l
move.b
init2 move.b
bsr
subqg.b
bne
move.b
bsr
bsr
move.b
bsr
move.b
bsr
bra
delay2 move.w
move.w
delay3 subg.w
bne
delay4 subg.w
bne
rts

$8000 ;start at address $8000

tps,a3 ;sets a3 address

#$18000,a0 ;RS=0

#$20000,a1 ;sets ADC to address register

#4,d2 ;loop size

#$30,d0 ;initialization

delay ;delay

#1,d2 ;loop decrementer
Init2

#3$01, dO ;initialization

delay ;delay

delay?2 ;added delay for clear
#$0E,dO ;initialization

delay ;delay

#$0C,dO ;initialization

delay ;delay

readl ; ;branch to next part of program
#$FFFF,d1 ;delay functions
#$FFFF,d2

#1,d2

delay3

#1,d2

delay4

vhkkkkkkkkkkkkkkkkkkkkhkkhkkkkkkkkkkkkhkk

rkkkkkkkkkkkkkkkkkkkkkhkkkkkkkkkhkkhkkkhkk
’

readl move.b
move.b
addi.b
move.b
movea.l
movea.l
mulu.w
adda.l

Jmp

tps movea.l
movea.l
move.b
move.b

$18000,d7 :move from latch into d7
d7,do ;copy into dO

#1,d0 ;add 1 to dO

d0,$28000 :send next sensor info to latch
#3$18002,a0 ;character write mode
#$8300,a6 :set address index

#$4,d7 :multiply to compensate for 4bypeade size
d7,a6 ;adds address index and compensatio
(ab) ;jjump to address of sensor

#tpsd,a3 ;move data location into a3

#tpsa,ad :move algorithm info to a4

#8,d3 ;character retrevial amount

#$84,d2 ‘LCD cursor reset

bra

tpsa move.b
sub.b
mulu.w
divu
move.b
andi.l
bra

map movea.l
movea.l
move.b
move.b
bra

mapa cmp.b
bhi
move.b
sub.b
move.b
divu
andi.l
bra

templ movea.l
movea.l
move.b
move.b
bra

templamove.b
sub.b
move.b
divu
andi.l
bra

temp2 movea.l
movea.l
move.b
move.b
bra

02 movea.l
movea.l
move.b
move.b

loop
#$FF,d1
d7,d1
#$6,d1
#17,d1
di,d7
#$ff,d7

go

#mapd,a3
#mapa,ad
#15,d3
#$84,d2
loop

#$99,d7
error
#$99,d1
d7,d1
di,d7
#%$6,d7
#$ff,d7
go

#templd,a3
#templa,ad
#19,d3
#%$8e,d2
loop

#$FF,d1
d7,d1
di,d7
#$2,d7
#$ff,d7

go

#temp2d,a3
#templa,ad
#18,d3
#$8d,d2
loop

#02d,a3
#o02a,a4
#19,d3
#$8f,d2

;branch to fetch/write char to screen
;math approximation code

;leaves lower byte intact

:move data location into a3

;move algorithm location to a4
:character retreval amount

;LCD cursor reset
:branch to fetch/write char to screen

:check for error

:math approximation code

;leaves lower byte intact

:move data location i@to a
;move algorithm location to a4
:character retreval amount
;LCD cursor reset
:branch to fetch/write char to screen
;math approximation code

;leaves lower byte intact

:move data location ito a

;move algorithm location to a4
:character retreval amount

:LCD cursor reset
:branch to fetch/write char to screen

:move data location into a3
;move algorithm location to a4
:character retreval amount
;LCD cursor reset

02a

iat

null

nulla

rand

randa

loop

error

read

go

bra

mulu.w
divu
andi.l
bra

movea.l
movea.l
move.b

move.b

bra

movea.l
movea.l
move.b
move.b
bra
bra

movea.l
movea.l
move.b
move.b
bra

bra

move.b
bsr
subqg.b
bne

bra
move.b
bsr
move.b
bsr
move.b
bsr

bra
clr.b
movea.l
move.b
jmp
cmp.b
bls
move.b

loop

#100,d7
#$FF,d7
#$ff,d7
go

#iatd,a3
#templa,ad
#20,d3
#$8f,d2
loop

#nulld,a3
#nulla,a4
#19,d3
#$93,d2
loop

stop

#randd,a3
#randa,a4
#20,d3
#$91,d2
loop

go

(a3)+,do
delayl
#1,d3
loop
reset
#$45,d0
delayl
#$72,d0
delayl
#$72,d0
delayl
reset

d3
#$18002,a0
(a1),d7
(ad)
#99,d7
showdec
#1,d3

:branch to fetch/write char to screen
;math approximation code

;leaves lower byte intact

:move data location into a3

;move algorithm location to a4
:character retreval amount

;LCD cursor reset
:branch to fetch/write char to screen

:move data location into a3

;move algorithm location to a4
:character retreval amount

;LCD cursor reset

:branch to fetch/write char to screen
;stop program because of no sensor

:move data location into a3

;move algorithm location to a4
:character retreval amount

;LCD cursor reset
:branch to fetch/write char to screen

;fetches next character fa@m
;writes char to screen w/ delay
;loop decrementer

:cursor reset
:subroutine writes Err t@eaor
;with delay

rresets d3
:character write mode
;moves data from ADC to datastegi

;jumps to current sensor data procgssin

:check if lower then 100
:if so branch to showdec
;ifnot setd3 flag to 1

showdecmove.w

reset

move.w
bsr
move.w
bsr
move.b
addi.b
bsr
movea.l
move.b
bsr
bra

dodigit andi.l

do

do2

divu
move.b
addi.b
cmp.b
beq
cmp.b
bne
move.b
bsr

bra
move.b
bsr
swap
rts

delay move.b
delayl move.b

subqg.b
bne
rts

delayl move.b

move.b

delayl2subg.b

bne
rts
org
bra
bra
bra
bra
bra
bra
bra

d7,d6
#100,d5
dodigit
#10,d5
dodigit
dé,d1
#$30,d1
delay

#$18000,a0

d2,d0
delay
read
#$ffff,d6
d5,d6
d6,d1
#$30,d1
#1,d3
do
#$30,d1
do
#$80,d0
delay
do2
d1,do
delay
dé

#6,d1
do,(a0)
#1,d1
delayl

#13,d1
do, (a0)
#1,d1

delayl2

$8300
map
templ
temp2
02

iat
null
rand

;Copy string into register D6
;store 100 devisor
;branch to dividing algorithm
;store 10 devisor
;branch to dividing algorithm
;copy d6 into d1
;add ASCII bias
;send to screen with delay
;set operation mode f@ LC

:move LCD start add into LCD mem.

;send to screen with delay
:return to main function

;clear upper word of d6

;divide string by devisor
;copy d6 into d1

;add ASCII bias of $30h
;check d3 flag

;If equal branch to send char
;if not equal send go to do

;send blank space to screen
;send with delay

;go to do2 procedure

;send to screen

;with appropriate delay

;get remainder

;return to original routine

;delay rountines

stop trap

org
tpsd dc.b
mapd dc.b
templddc.b
temp2ddc.b
o2d dc.b
jatd dc.b
nulld dc.b
randd dc.b

end

#9
$8350
'TPS=",$80,$80,$80,%df ;data
'MAP="$80,$80,%$80," in. Hg.'
'Cyl.Head Temp=',$80,$80,$80,%$df,'C'
‘Coolant Temp=',$80,$80,$80,$df,'C'
'EGR Valve Lift=",$80,$80,$80,'%'
'Intake AirTemp=',$80,$80,$80,$df,'C'
'No Sensor Available'
'Test of 8bit ADC=',$80,$80,$80
init

PC Program

This program communicates with the SBC throughstréal port. In the
assembly program we will declare a3 as the addoedke serial port. With our SBC,
the address is $10000. Then whenever we readtfrerpotentiometer, we will send the
data to the serial port as well as the LCD. Wethisecode:

move.b d7, a3 ;moves the data in d7 to the seoidl

At this point, everything is happening at the P@.ehRirst we needed to create a form
and load in the MSComm32.0CX component. This camepballows serial
communication through com port 1. The programrigten in Visual Basic 5. We

picked an easy programmable language to get a\geodl of what is happening from

the sensor. In the SBC, the Intel 8251 UART idgamdata at a 38400 baud rate. In the
program, we set the Com Port to 8-bit, no parityhandshaking, and 38400 baud rate,
with a stop bit of 1.

MSComml1.Settings = "38400,N,8,1" 'sets the bauel @rity bit, bit size and
'stop bit
MSComm1l.Handshaking = comNone 'no handshaking f po

Then we had to set the length of the buffer, &iedode at which to send. Since
we are going to be receiving binary data, the nmaateto be set to binary. As
information is sent through the serial port, a bufftores the data until the user of the
program asks for it. by setting the length of bléfer to zero, the program will read all
data in the buffer. These commands set thesersptio

MSComml1.InputLen = 0 'sets length of buffer to 0
MSComml.InputMode = cominputModeBinary 'sets talrbeary
MSComm1.NullDiscard = False ‘accepts binary "0"
MSComm1.DTREnable = True 'sets the data termeedy to true

Once everything is initialized, the port can bemgd. When the port is opened,
the PC will now be receiving whatever data is beiagt. This data may be coming to
the port incorrectly due to non-synchronizatiomc®the reset button is hit, however,
the data should be sending correctly. Once theeidaktceived, the PC must convert the
8-bit data into useful information. We need th&adsonverted to a number. This is the
operations needed to do so:

Select Case MSComm1.CommEvent
Case comEvReceive 'redefines the size of buifam t
txtSensor. Text = "
ReDim InBuffer(MSComm1.InBufferCount)

ReceiveBits 'reads the bits from the port

Case comEventRxOver 'redefines the size of bifffer
ReDim InBuffer(MSComm1.InBufferCount) 'the buffstiarts to overflow
End Select
If MSComm1.InBufferCount = 0 Then ‘checks for detduffer and displays if not
txtSensor.Text = "No Data in Buffer"
InBuffer = MSComm1.Input 'pulls data from buffer
For i = 0 To UBound(InBuffer) 'takes upper boundbaffer

message = Chr$(InBuffer(i) + 30) 'and puts it istring
Next i
txtSensor.Text = "Sensor Reading=" & message ewniessage to text box

The Chr$ is the line that takes the 8 bits andveds it to a character string.
Since we need a number, we need to add&8@e binary number to gets the correct
ASCII character string we need. Below is an AS&irt to see how it converts from
binary to the character needed (taken from Profd?esenstark’s ECE 252
Supplemental Notes):

Table 1.1: The ASCII Clode Chart.

Dec Hex Char || Dec Hex Char || Dee Hex Char || Dec Hex Char
i} [N} NUL 32 20 SP G4 40 5] 06 G0 N
1 ol SOH a3 21 ! G5 41 A a7 61 1
2 02 STX 34 22 " GG 42 B 98 62 t
3 03 ETX a5 23 Sl G7 43 C e} 63 [
4 (18 EOT 36 24 § G 44 D 100 G d
5 05 ENQ a7 25 % 69 45 E 101 65 e
G 06 ACE a8 26 & T 46 F 102 (ils f
T o7 BEL a0 27 . T1 47 G 103 67 >4
S 05 BS 40 28 i T 45 51 104 65 h
o [ae] HT 41 20 1 T3 409 I 1058 69 i

1 0A LF 42 245] T4 4A J 106 G6A Al
11 oB VT 43 2B + 75 4B K 107 6B k
1z 0C FF 44 2C . TG 4C L s ac 1
13 oD Cht 45 2D — 77 4D M 10a 6D 1
14 0OE S0 46 2E 5 s 4E N 110 6E n
15 OF SI 47 2F 70 AR o 111 GF o
16 10 DLE 48 30 0 20 a0 P 112 7O P
17 11 D1 40 31 1 =1 a1 Q 113 71 q
1= 12 DC2 a0 32 2 22 52 R 114 T2 T
19 13 D3 A1 as 3 B3 53 s 115 73 s
20 14 Dy 52 34 4 23 54 T 116 T4 t
21 15 NAK 53 35 5 B5 55 Lo 117 75 u
22 16 SYN S4 36 (il =6 56 v 118 kil v
23 17 ETE L5 a7 T =1 a7 W 119 7T w
24 18 CAN A6 as = B 58 X 120 = x
25 19 EM AT 30 9 =0 50 b4 121 79 ¥
26 1A SUB 58 3A & o0 5A & 122 7A -
27 1B ESC A9 3B i al 5B [123 B i
28 1C s 60 30 = 92 5C A" 124 TC |
29 1D GSs (53} aD = 93 5D] 125 D t
an 1E RS 82 3E = o4 S5E - 126 7E -
31 1F s 63 3F 7 05 5K 127 7F DEL

Once the PC has the correct character, which sncise is a number, we can
generate a scope view. Below is the code to Harelata received from the SBC
transformed into graphical data:

iLow = iHigh + iDelta '‘Low Scope Trace Value

LabelOffSet = Index * 35 'One Control Array For Albrts (offset accordingly)
picScope.Refresh ‘Clear The Scope Display

hPic = shpScope.hDC '‘Get The Handle of The Scoppl®& Picture Box

iBytes = UBound(nScope) 'No Of Bytes In The Dataa&rTo Display

iZ=0

With PortSet '‘Count The Additional Bits From Ther8 Settings
If .Parity <>"n" Then
iz=1
bChkParity = True
End If
iBits = CLng(.DataBits) ‘Number Of Bits To Disgl&rom Port
'Settings
iIStop = CLng(.StopBits) ‘Number Of Stop Bits TodAd
IZ =iZ + iBits + iStop'Sum Stop,Parity, and D&#s
End With

iBitCount = (iZ * (iBytes + 1)) + (iBytes + 1)
ReDim bTrace(iBitCount - 1) "Trace Array One less than Total BitCount
" (array index)

iZz=0

ForiX =0 To iBytes '‘Max iBytes is 3 (Four Byteate)
bTrace(iZ) = True ‘Start Bit
IbIScopel(iZ + LabelOffSet).Caption = sStartBitledb
Z=iZ+1
IOnBits =0 'Zero Count For On Bits To Check Bari
ForiY =1 To iBits 'Parse Each Data Bit

bOn = BitOn(Data(iX), iY)
IONBits = Abs(bOn) + iOnBits

bTrace(iZ) = Not bOn ‘Invert as Negative VoltageScope is
‘Logical True
IbIScopel(iZ + LabelOffSet).Caption = CStr(iY) 1
iZ=iz+1
Next
If bChkParity Then ‘True For All Buaity Setting Of "None"
Select Case PortSet.Parity
Case "e" 'Even Parity
If iONnBits Mod 2 Then 'OnBits is OddrRy Bit Is On
bTrace(iZ) = False
Else
bTrace(iZ) = True 'OnBisskven Parity Bit Is Off
End If
Case "0" '‘Odd Parity
If iOnBits Mod 2 Then 'OnBisOdd Parity Bit Is Off
bTrace(iZ) = True
Else
bTrace(iZ) = False '‘OnBggven Parity Bit Is On
End If
Case "'m" ‘Mark Parity BitAsways On

bTrace(iZ) = False

Case "s"

bTrace(iZ) = True 'Spaceity it is Always Off
End Select
IbIScopel(iZ + LabelOffSet).CaptiorsBarityBitLabel
iZ=iZ+1

End If

'Set The Scope Trace Stop Bits
If iStop = 1 Then 'One Stop Bit
bTrace(iZ) = False 'Stop Bit
IblIScopel(iZ + LabelOffSet).Caption StgpBitLabel
iZ=iZz+1
Else "Two Stop Bits
bTrace(iZ) = False 'Stop Bit
IblIScopel(iZ + LabelOffSet).Caption StgpBitLabel

bTrace(iZ + 1) = False 'Stop Bit
IblIScopel(iZ + LabelOffSet + 1).CaptromisStopBitLabel
iZ=1Z+2

End If

Next

'‘Get The Proper Scope Trace To Match The Backgr@aiadr
iTraceColor = typDisplayColor.Trace

iBits = 0 'Zero The Bit Count Index

bOn = bTrace(iBits) 'Parse The Trace Array And DoawScope Display

For iX =1 To picScope.ScaleWidth 'X Coordinate
iY = iLow - (Abs(bOn) * iDelta) 'Y Coordinate

Do While iX Mod iPW '‘Draw Horizontal Line To ThauRe Width
SetPixel hPic, iX, iY, iTraceColor
iX=iX+1

Loop

If iBits < UBound(bTrace) Then '‘Check For End O&de

If bTrace(iBits) <> bTrace(iBits + 1) Then 'Chetk See If Next Bit Has
'‘Changed State

For iY = iHigh To iLow ‘Next Bit Change In Stalraw
‘Vertical Line
SetPixel hPic, iX, iY, iTraceColor
Next
End If
iBits = iBits + 1 '‘Get The Next Bit
bOn = bTrace(iBits)
Else 'End Of Trace Data Set The Stop Bit
iIX=iX+1 'Skip a Bit for the Stop Bit
iBits = iBits + 1 + LabelOffSet
Exit For

End If

Next

Do While iX < picScope.ScaleWidth 'Run The Scopac&rOut
SetPixel hPic, iX, iLow, iTraceColor
iX=iX+1

Loop

For iX = iBits To LabelOffSet + 47 'Set The RemamScope Label Captions
IbIScopel(iX).Caption = "-"
Next

These are the basic functions needed to haveBBecBmmunicate with the PC.
The scope is the feature in the PC program th#tiduanalyses the sensors from the
vehicle. The whole program can be found in the @ogning section of the report.

Visual Basic Program: Screen Shots

Below are several preliminary screenshots of tsaalibasic program we created:

signal Analyser & E
Eile About
Soope
! -

Open Fort | Eloze. Fart |

About signal Analyser [x| |

Signaldnalpzer

Verzion 1.0.0

Thig program communicates through the COM port and
dizplayz the zignal infarmation that iz given

copyrighted: Jonathan Johnstan and &dam Serafin

20pt System Info... |

Conclusion:

Designing and implementing our project was a \a1gllenging process. Design
methods that did not work had to be scrapped. Usavg hardware such as LCD
displays, and Analog to Digital converters invohatkarning curve that required a lot of
time to master. For example, the first LCD screenondered was defective. Unsure of
our own understanding and methods to work the agotsgued us until enough testing
had gone by when we finally had no doubt the LCi2a was faulty. Designing the
sensor scroll feature was also met with difficulijter several different attempts at using
different hardware failed, the idea of using aHatz store next sensor states proved
successful.

Even software design proved to be a difficult enae that required a good
understanding of the Motorola 68k Series Instrucget Architecture. In addition to the
syntax, programming structures such as loops, tiondj branches, subroutines, and data
flow all had to be mastered. Software design ini¥8 little less tedious then that on the
assembly level but still a major pain nonethelass, there are still bugs in this software
that would take months to massage out.

In addition to learning from the problems, we desarned a bit on structured
design. By using structured design it is possibl&atkle one design problem at a time
rather then a host of design problems that woulditiieult or impossible to debug
effectively. Overall this project was a huge susdascause we had high goals, and met
them through hard-work. The end result is a smgatinhning system that is a valuable
asset to any technician or car junkie wishing agdose a problem resulting in poor

drivability, low fuel economy, and failed emissidests.

		2004-12-15T12:51:29-0500
	Jonathan Johnston

