

ECE-416: Senior Project

Automotive Diagnostic Tool

Adam Serafin
Jonathan Johnston
December 6, 2004

Senior Project: Final Report

Table of Contents

Introduction ..1
Proposal
 Abstract ..2
 Background ..4
 Preliminary Design ..5

Motorola 68k Single Board Computer
 Why the M68k? ..6
 Software Details...7
 Hardware Details...8
 M68k SBC Schematic...9
Project Design
 Hardware
 Analog to Digital Conversion ..10
 Analog to Digital Conversion Schematic.........................12
 Sensor Scroll Feature ..11
 Sensor Scroll Schematic...13
 DC Power Source ..12
 20x1 LCD line display ...8
 Sensor Simulation ..9
 LCD Schematic ..2
 Software
 Assembly Program...18
 BCD Conversion ..34
 Reading Individual Sensors ...ad
 Processing Data...34
 Program Flow ..23
 Final Assembly Code ...44
 Visual Basic Program..13
 Screenshots ..89
Conclusion ..45

Introduction:

This report is documentation of our senior project from its beginning to the very
end. Our project was first conceived in ECE-414 which is the project proposal component
of the Senior Project class that is required for our Bachelors degree in Computer
Engineering. Our project can be subdivided into three parts; proposal, design, and
implementation. This report is organized similarly.

This project was fairly well rounded in the area of Computer Engineering. The

design involved both hardware and software. Designing the required hardware demanded
knowledge of computer architecture, digital logic, and integrated circuits (ICs). In
addition, knowledge of basic circuit theory is a must. As for software design we
programmed in both assembly language and high-level language. Because our project is
based upon the Motorola 68000 Series microprocessor, we wrote our program using this
assembly language. In addition, we used Visual Basic to write software that would allow
our M68k single board computer to communicate with any PC.

Our project was challenging in both design and implementation. It took the entire

semester to complete the basic functions as we proposed. As with most engineering
projects, after successful completion we have noticed many areas that can be upgraded
and improved.

Proposal: Abstract

 The first automobiles relied on mechanical systems to operate the engine. This
proved good for the times, but the evolution of the computer would make a big change.
Modern automobile fuel and ignition systems are almost entirely computer controlled.
The ECU(Electronic Control Unit) of an automobile is responsible for making the precise
calculations that allow the proper amounts fuel to be injected at the proper time. The
ECU also determines exactly when to fire each spark plug taking into account the ignition
spark advance and retard under all engine operating conditions. The ECU obtains all of
its data through various electrical sensors. When an engine component fails or one of the
sensors is not working properly, the engine will not function efficiently or sometimes, not
at all. It is difficult to determine which sensor or mechanical system is not functioning
correctly because the vehicle operator does not have access to a unit that can display
sensor output. Our proposal is to make this available.

Proposal: Background

Since our project emphasizes automobile engine diagnostics, we will monitor the
sensors that allow the operator or technician to completely understand the common
problems. Examples and information of the sensors we’d like to monitor are as follows:

Intake Air Temperature(IAT) : Changes its resistance with respect to the ambient air
temperature. The temperature of the air is related to how dense it is. As air temperature
decreases, density and oxygen content increases. The output of this sensor is important
for diagnosing trouble with the intake system, and a malfunctioning of this sensor would
result in a less efficient operation of the engine. The output that we would like to obtain is
ambient air temperature.

 Throttle Position Sensor(TPS): The TPS essentially is a potentiometer that is
controlled by the throttle (gas pedal). This sensor is located on the throttle body. Throttle
position is one of the key elements of fuel injection control. A problematic TPS sensor
can result in loss of engine power. The output that we would like to obtain is throttle
position in degrees.

Manifold Absolute Pressure(MAP): The MAP sensor varies its voltage with respect to
the air pressure inside the engines intake manifold. The MAP sensor accurately senses the
amount of vacuum in the manifold. Manifold vacuum is a good indicator of engine load.
A malfunctioning MAP sensor can result in erratic engine idling, loss of power, less
efficient operation, etc. The type of output we would like to obtain is engine vacuum in
inches mercury (unit of vacuum) the range is 30 inches mercury to 0.

EGR System: EGR which stands for Exhaust Gas Recirculation is a system that was
implemented in the 1980’s to produce cleaner vehicle emissions. The theory behind this
is that engineers have noticed when inert gas is introduced into the combustion chamber
of the engine, NOX emissions are reduced. However, there is one problem, introducing
an inert gas from some outside source of the vehicle would be impractical. The solution
to this problem was to use exhaust gas as the inert gas. This was an ideal solution because
the oxygen and fuel of exhaust is almost entirely spent.

 The effectiveness of the EGR system is achieved by carefully metering exhaust
gas into the intake manifold through a variable valve. This valve is vacuum controlled by
a diaphragm which in tern is controlled by a solenoid actuator. To ensure that the EGR
system is working properly, modern manufacturers employ a EGR Valve Lift sensor. The
EGR lift sensor is used to send an analog signal representing valve lift to the ECU. The
ECU then compares this actual valve lift to theoretical valve lift. If the two values do not
agree then the system is not working properly which can result in a “Check Engine” light,
poor running conditions, and finally increased emissions. Because this system is so

important to the clean operation of an engine, and common engine trouble, a read-out of
this sensor information would be extremely valuable to a technician.

Coolant Temperature Sensors: The coolant temperature sensors used in modern
vehicles are what are known as thermistors. This means that it varies its resistance with
respect to temperature. Coolant temperature sensors are of great diagnostic value because
they can detect cooling system problems. Coolant temperature sensors also allow the
computer to adjust its fuel map according to the temperature. The output we would like to
obtain is coolant temperature.

Proposal: Preliminary Design

In our project design we will use the 0808 Analog to Digital converter. This chip

contains 8 converters which will allow us to convert the analog sensor outputs into the
binary data we need to complete the calculations. We will also need the Motorola 68k
Single Board Computer. The M68k SBC is a Single Board Computer that we have
constructed together previously. The price to build one is around $150. We will get an
LCD display (about $30) and connect it to the SBC to have a better and easier to read
display screen. The M68k will provide sufficient processing power to provide a real-time
display of sensor information. We will have to program the M68k in assembly language.
The programming is crucial because it will contain the algorithms that will obtain the
proper conversion data in a lookup table that will be stored in the SBC’s ROM. Our
interface will also allow the user to toggle through the different senor outputs. We are
thinking of also making the interface toggle according to a set timer. Lastly, we want to
take the serial port of our SBC and connect it to a PC. This will allow a user to do
further, more powerful analysis of the sensors and create a more user friendly, GUI
interface. This part of our project entails knowledge of the C++ programming language
and how the serial port of the SBC transfers information to the PC.

As of now the SBC is dependant on a 120VAC source. We would like to create a

power supply for it that will take advantage of the automobiles 12-13.5VDC system
conveniently available through the cigarette lighter. This will make our project
completely portable, unlike the expensive diagnostic equipment. This offers an advantage
of diagnosing problems when the engine is in highway or city conditions.

The first step in designing our project is obtaining the desired senor outputs that

we want through the engine’s electrical system. To simulate analog sensor outputs we
will use 100k ohm potentiometers that will connect to the 8 analog inputs on the analog
to digital converter. The next phase of project design will be the configuration of the
analog to digital converter within our M68k SBC. This configuration will be somewhat
complex because we want the user to be able to toggle through all of the different sensor
outputs. This design of this will probably use a 3-8 Decoder and a 4-1 Multiplexer. The
next step of the design is writing the code in assembly language that will convert the
binary data obtained from the analog to digital converter. The conversion of this binary
data is needed in order to obtain values corresponding to what the sensor is sensing. We
will use a lookup table in the ROM of the SBC that will correspond binary values with
actual data. Once this data is obtained, we will output it to an LCD display. This will
allow the user to know what the sensors are outputting.

 The final phase of our project design would be to interface the SBC to a PC. This
will involve programming in both C++ and assembly language.

Motorola 68k Single Board Computer: Why the
M68k?

 To implement our project, a microprocessor is necessary to receive, process, and
output data in a carefully structured manner. Because we studied the design of the
Motorola 68k, and built an SBC around one in two of our undergraduate courses; using
the M68k SBC in our project was a logical step.

Our SBC has many desirable features for this project, they include: serial I/O,
RAM, EEPROM, parallel I/O, room for expansion, and a basic operating system. Serial
I/O is necessary for our project because of the need to transmit/receive data with a PC.

The RAM would allow us to store programs on the SBC that were downloaded

via the serial port. This is very important for software testing; imagine re-burning an
EEPROM every time you made a change to your software? The EEPROM would serve
as the storage for the final version of our software. Parallel Input is necessary, and was
used to implement the sensor scroll feature of our project. Parallel Output was used to
output data to our Parallel LCD display and an LED bar display. Room for expansion was
a major benefit since we would have to add additional I/O to our system. The use of a 3-8
Decoder for the addressing logic in the design of the SBC allows us to add up-to 4
additional I/O devices with relative ease. This will come in handy for the sensor scroll
feature and addressing the Analog to Digital Converter.

The final and perhaps greatest asset of the M68k SBC was the monitor program

designed by Professor Rosenstark. The monitor program when stored on the system’s
EEPROM allows you to download programs to the SBC serially. This is a great way to
debug software on the actual system which is necessary to accomplish things an emulator
cannot possibly handle. An example of this is the need to run programs on the SBC to test
and debug the LCD display, or the Analog to Digital Converter.

Motorola 68k Single Board Computer: Software
Details

 In a class called ECE 252 we studied the instruction set architecture of the
Motorola 68000 series microprocessor. This class taught us to write and emulate
assembly level programs using two programs called asm68k.exe and emu68k.exe. Both
of these programs are written by the author of the textbook used in ECE 252: The 68000
Microprocessor: Hardware and Software Principles and Applications Fourth Edition,
James L. Antonakos.

 Asm68k.exe is an assembler, this means it is a program that converts assembly
op-code into machine code. Machine code is the hexadecimal equivalent of assembly op-
code that is stored into the memory system of the SBC and is executed by the processor.
In addition, asm68k.exe had advanced features that can pick up syntax errors, and create
a .lst file that show addressing and disassembly data of the assembly op-code. A .lst file
can be opened with any text editor, namely notepad.exe which is available on every
Windows PC.

Emu68k.exe is an emulator that allows the programmer to execute programs that
were designed to run on the Motorola 68k on an everyday PC instead. Emu68k.exe was
extremely valuable in our software design because it allowed us to work efficiently. This
holds true because it is much quicker to modify and test programs using the emulator
then it is to use the SBC. One could test and debug programs on any PC without having
to carry the SBC everywhere, and it is quicker to test the program in an emulator using a
DOS prompt then it is to download a program to the SBC with a serial communication
program. While the emulator may be more convenient, it still cannot replace the
hardware of the SBC because quite a few things needed to be tested with I/O that would
be difficult or impossible to emulate in some cases.

Shown below is a simple program written in Motorola 68k Series Assembly
language to give you a feel on how this is done. The semicolon ‘;’ is used for comments.

Org $8000 ;start at first location in RAM
Prog move.b #$FF,d0 ;moves byte $FF into data regi ster
 Trap #9 ;interrupt request
 End prog ;ends program

 This program should be written in notepad because it is free of any text formatting
characters unseen to the user. This program must be saved with the file extension of
‘.asm’ in order to be used by the assembler. The first step in running this program is
converting the opcode into machine code using asm68k.exe. To do this you must obtain
this program at http://www.sunybroome.edu/~antonakos_j/68ktoc.html . Place this
program into a directory. Use a DOS prompt to access the directory and type “asm68k
filename”. The assembler will then assemble the file and create a .hex file that contains

the hex code needed. In order to run the program using the assembler you must obtain
emu68k.exe from the address above, put this file in a directory, access this directory in
DOS, and type emu68k filename. The emulator will load, at this point type ‘g’. The
program will then execute.

 To run this program on the SBC itself you must use serial communication
software such as “hyperterminal”. Open this program set these parameters: baud rate to
38400 bps, no stop bits, no parity bits, and no hardware. Once these parameters have
been set the software will now be in communication with the SBC’s monitor program.
Now reset the SBC using the reset button, type ‘L’ at the prompt, from the menu select
“send text file,” select filename.hex of the program you want to run and click “send.” The
hex code will transmit, after this is done press enter and type in ‘g’ to run the program.
The program has now been executed

 Now that the basics such as writing a program in notepad, assembling, and

executing the program in an emulator and on the SBC have been covered, you will have
an easier time understanding the assembly software information detailed in this report.

Motorola 68k Single Board Computer:
Hardware Details

 The ECE 252 and ECE 395 supplementary manuals at the URL:
web.njit.edu/~rosensta provides in depth documentation of the hardware details of the
Motorola 68k SBC. Below are the basic principles of the organization and architecture of
the SBC that are required to understand our project design.

 The addressing logic generated from the high order address pins of the CPU is the
heart of understanding the function of the SBC. To simplify matters the SBC was
designed using a 3-8 decoder to generate the addressing logic. The 3 high order address
bits are input into the decoder which allow up to 8 unique outputs. In technical terms this
is known as high-order interleaving. When studied, the schematic illustrates the principle
of addressing, for example when the three high order address bits are 000 the first output
of the decoder is selected, this output when enables the EEPROM chip. Therefore the
first location of EEPROM is at $00000h. Now consider the second output on the decoder
if you trace the schematic it leads to the Chip Enable CE pin of the RAM chip, this output
is asserted when the 3 high order address bits are 001 now illustrated with the other
address pins starting from A17-A0:

00(1000)(0000)(0000)(0000)
=$8000h

Therefore the starting address of the RAM is $8000h. Using this method you will

arrive with $10000h as the starting address of the Serial Port, $18000h as the starting
address of the Parallel Input/Output port. You will notice that sel4 and sel5 are not used
but when considered, these addresses will be $20000h and $28000h respectively. This is
important to note because these two addresses will be used for our project.

 Other interesting hardware details of the M68k SBC are that it has an 8 bit data
bus, a system clock speed of 9.8304 MHz, a binary ripple counter that divides the system
clock into lower frequencies for the operation of the serial port interface, and several
unused logic gates. Another point worth mentioning is the reset circuit design. This
design uses a SPST momentary push-button switch de-bounced using a 330ms RC time
constant and Schmitt-trigger inverter. By inherent design the Schmitt-trigger inverter
ensures a cleaner more “square” pulse.

 The aforementioned hardware features of the SBC are necessary to understand the
implementation of our hardware design. Additional, more advanced documentation of the
M68k SBC design can be found at Professor Rosenstark’s website (listed above)

Motorola 68k SBC Schematics:

Hardware: Analog to Digital Conversion

 Almost all physical occurrences are analog. This means that they are continuously
variable, or measurable. Examples are length, width, voltage, pressure, temperature etc.
This applies to an engine’s operating conditions as well. The ECU, as explained earlier
has many decisions to make in order to successfully fire the spark plugs and fuel
injectors. The ECU bases these decisions on its inputs, much like humans base their
decisions on their inputs, i.e. eyes, ears, taste, touch, and smell. In order for an ECU to
make decisions based on the inputs it must process the information. For an ECU to
process this analog data, it must first be converted to a binary value. Our project follows
these same guidelines.

 In order to make the conversion, we will use an 8 bit Analog to Digital converter,
namely the ADC0808. The ADC0808 can access up to 8 different analog signals via
three address pins and one address latch enable pin. Once the address has been set on the
three address pins the address latch enable pin must be pulsed high in order to “latch in”
the new address. It is this process that selects 1 of up to 8 analog inputs.

 To integrate the converter into the SBC’s system architecture several steps must
be taken. The first step is to wire the 8 data pins into the data bus on the SBC. Next, for
continuous conversion START and EOC on the converter must be wired together. Vcc
and Vref+ must be wired to +5V, by contrast Vref- and Gnd pins are wired to ground.
The address latch enable is supplied by the output of the Schmitt-trigger inverter used by
the SBC’s reset circuit. This means that ALE will be pulsed whenever the reset button is
depressed, the reason for this will be explained in the Sensor Scroll section of this report.
The three address pins on the converter will be wired to the output of a latch we added to
the system. The explanation for this is in the Sensor Scroll section as well.

The ADC0808 requires a clock input in order to do conversions on analog data.
We originally supplied this clock signal from the SBC’s existing binary ripple counter.
However, the frequency was much too high and resulted in data that seemed very
unstable. To remedy this we obtained another binary ripple counter and used the MSB on
the original counter to drive the CLK input on the next counter. By doing this we
effectively obtained a slower, more reasonable frequency (2.4kHz) to supply our
converter with.

 Finally the last step of successfully integrating the ADC0808 into the SBC is
generating the output enable signal. Because the system architecture of the SBC uses
memory mapped I/O we must enable this chip using addressing logic. To do this we will
use the fifth output of the 3-8 decoder located on the SBC. Because the outputs of the
decoder are active low we must invert this signal using an un-used Schmitt-trigger
inverter (74LS14). The output of the inverter can now be input to the “output enable” pin
on the ADC0808. The address of the ADC0808 is now $20000h. To illustrate this below
is a simple program that reads from the converter and writes to the output port ($18000h)

 Org $8000
Prog move.b #$20000,d0 ;move from converter to d0
 move.b d0,$18000 ;move from d0 to output port
 bra prog ;branch always to ‘prog’
 trap #9
 end prog

The above program is an infinite loop that continuously reads from the converter and
outputs to the output port.

ADC0808 Pinouts:

Analog to Digital Conversion: Schematics

Hardware: Sensor Scroll Feature

 The sensor scroll feature allows the user to toggle through different sensor outputs
by the push of a button. The button used to accomplish this is the reset button. As
described in the hardware description section the reset button on the SBC is a SPST
momentary pushbutton switch. The reason why we use the reset button to toggle through
states is because its simple, shortens the amount of code need to be written, and acts as an
interrupt.

 To implement this design a storage device is needed. For this purpose we used a
d-type latch. We wired three input pins of the latch to the data bus of the SBC, the three
output pins are wired to the input port of the SBC, and ADD A, ADD B, and ADD C in
parallel. The CLK signal of the latch is generated by the addressing logic of the SBC. We
used the sixth output of the 3-8 decoder. As with the converter, we needed to invert this
signal using an unused Schmitt-trigger inverter. The output of this inverter is wired to the
CLK pin on the latch. The latch is addressed at $28000h. See the schematic for an
illustrated view.

 The reason why we used a latch is that once the project is powered up the latch
will contain $00 which means that the converter will be reading from the 1st analog
sensor input. In our main program we read from address $18000h because this address
contains the value of the latch. We then store this value into a register, add 1 to this value
and write the result back into the latch. The code to implement this is shown below:

Move.b #$18000,d0 ;reads from input port
Addi.b #1,d0 ;adds 1 to the value
Move.b d0,$28000 ;writes value to latch

When the 3rd line of the above code is executed the latch contains the previous

value+1 this means that the address pins on the converter also contain the same value.
However, the present value of the address pins on the converter are not being used until
the Address Latch Enable pin is pulsed. Therefore once the reset switch is depressed the
present value will be latched into the converter. Now the process will repeat itself in a
way that every time the reset switch is pressed, the next converter input will be read.

 The sensor scroll feature is very important to the usefulness of our project and
takes advantage of the converter’s ability to read from 8 different sensors. While
functional, it is also simple in that it is activated by the push of a single button.

Sensor Scroll Hardware Schematic:

Hardware: DC Power Source

The SBC was initially powered by a 120VAC source that was stepped down,
rectified, and cleaned to +5VDC. This was done using a standard 120VAC in +5VDC out
power supply. Because the average car does not supply 120VAC and we want our project
to be completely portable, we had to find a way to connect into an automobiles DC
voltage system. To do this we simply used a ATA6405 voltage regulator IC. The reason
why we chose this IC is because of its low power consumption, use for automotive
applications, and thermal overload shutdown. This IC is vital to regulate the unstable 12-
14 VDC supplied by an automobile’s electrical system. For ease of use, our project can
be plugged into a vehicle’s cigarette lighter outlet.

This feature is extremely important because it allows the user to diagnose/monitor
engine operating conditions on the road. This is advantageous because most problems do
not reoccur in the confines of a garage bay. Furthermore this allows our design to be
completely portable.

Hardware: 20x1 LCD Line Display

 The LCD we have decided to use is a parallel 20x1 line LCD. There are only
fourteen pins needed for the LCD. The Hitachi HD44780U controller chip is integrated
onto the LCD chip. The pin numbers and functions are as follows:

We connected pin 3 to a potentiometer to create a contrast knob for the LCD screen. Pin
5 goes to ground because we are only writing to the screen, never reading. Therefore we
constructed our assembly program so we only write to the LCD and never read from it.
Pin 4 is connected to address line 2. This pin toggles between the write function of
characters to the LCD and the operation functions of the LCD screen. If the pin is high,
the LCD is in character writing mode and operation writing mode if low. The address of
writing mode is $18002, the address of operation writing mode is $18000. Pin 6 is
connected to the enable pin on the 74LS373 chip on the SBC. This pin is pulsed to
enable the LCD.
 The Hitachi chip on the LCD board allows 5x8 or 5x10 sized characters. It also
allows an 8-bit operation, 8-digit x 1 line display, a 4-bit operation, 8-digit x 1 line
display, and an 8-bit operation, 8-digit x 2 line display. Because the Hitachi has these
choices, we needed to do a function set to tell the Hitachi chip what type of display we
are using.

 Once again the LCD is addressed to 18000 on the board. Since the RS pin is
connected to address 2, at address 18002, the RS pin is high and at 18000, the RS pin is
low. We decided to not display the cursor because of the rapid change in position. Since
we decided to ground the R/W pin, the SBC cannot read the busy flag of the LCD. The
SBC operates at a system clock many times higher then that of the LCD circuitry. This
can cause problems in the character writing and operation performing because the SBC
may go to the next instruction before the LCD is finished with the instruction. To fix this
problem, we wrote a delay function in our program.

delay move.b #6,d1 ;This moves the number 6 to d1
delay1 move.b d0,(a0) ;This moves d0 to address a0
 subq.b #1,d1 ;This subtracts 1 from d1
 bne delay1 ;If d1 ≠ 0 then it goes to delay1
 rts ;This returns back to where it
jumped from

The LCD is initialized when the power is turned on; however, we are using the

reset button as our toggle button so we need to manually initialize the LCD. To do this,
we followed this flow chart and programmed accordingly. We also used this
initialization sequence in the beginning of our program.
init movea.l #$18000,a0 ;sets the RS to 0, puts add ress in
a0
 movea.l #$20000,a1 ;sets the potentiometer to a1
 move.b #4,d2 ;moves number 4 to d2
init2 move.b #$30,d0 ;moves HEX 30 to d0 (sets to 8 -
bit,1 line,
 ;5x8 dot)
 bsr delay ;jumps to the delay
 subq.b #1,d2 ;subtracts one from d2
 bne init2 ;if d2 isn’t 0 then it goes back
 move.b #$01, d0 ;moves HEX 01 to d0 (clears the
screen)
 bsr delay ;jumps to the delay
 bsr delay2 ;does an extra delay because
clearing takes
 ;longer
 move.b #$0E,d0 ;moves HEX 0E to d0 (sets cursor
shift,
 ;decrement)
 bsr delay ;jumps to delay
 move.b #$0C,d0 ;moves HEX 0C to d0 (turns cursor
off)
 bsr delay ;jumps to delay
 bra read1 ;jumps to start of program
delay2 move.w #$FFFF,d1 ;moves HEX word FFFF to d1
 move.w #$FFFF,d2 ;moves HEX word FFFF to d2
delay3 subq.w #1,d2 ;subtract 1 from d2
 bne delay3 ;if d2 isn’t 0 goes to delay3
delay4 subq.w #1,d1 ;subtracts 1from d1
 bne delay4 ;if d1 isn’t 0 goes to delay4
 rts ;returns to jumped spot

The character chart of the Hitachi is very similar to the ASCII chart. The HEX

values for numbers and letters are exactly the same. The HEX for symbols may be
different. Since the HEX values for numbers are the same for Hitachi and ASCII, we
were able to use an algorithm to convert the 8-bit data into the HEX value needed to
display a number on the screen. The Hitachi character chart is shown below:

Hardware: Sensor Simulation

 In our project, we needed a way to simulate the signals that the car sensors would
send. We decided that using 8-100k ohm potentiometers are the best solution because a
potentiometer is an analog signal that varies in voltage.
 The potentiometers that we are using have three pins to be wired.

GND +5V
Wiper

The wiper of each potentiometer is connected to the analog input pins on the

ADC0808. The A/D converter chip can receive up to eight analog signals. Each Out pin
of each potentiometer is wired to the In0-In7(pins 1-5, and 26-28) pins of the A/D
converter.

LCD Schematics

Assembly Program: BCD Conversion

 One of the most important subsystems of our project is to output data to an LCD
screen. Suppose I want to send the number 255 to the LCD screen. In order for this to
work I would have to send ‘2’ ‘5’ ‘5’ (when the characters are in quotes assume it’s the
ASCII equivalent of that character). Simply stated, only one character can be sent to the
screen at one time. In order for this to occur, some processing must take place, it is
known as binary to BCD conversion. If we were to convert the number 255 the following
steps would have to take place:

255÷100=2 Remainder 55
55÷10=5 Remainder 5
5÷1=5 Remainder 0

 As you can see from the bold type the numbers ‘2’ ‘5’ ‘5’ are isolated from the
original 255. This is the only way characters can be sent to the LCD screen, one at a time.
A final operation must be done on this data, because of the ASCII standard a bias of $30h
must be added to each character being sent to the screen so
(2+$30)
(5+$30)
(5+$30)
will yield 255 written on the LCD screen.

The code to perform such an algorithm is described above with the addition of
deleting most significant zeros from the 3 number string, and returning the cursor back to
the start position (reset).
go cmp.b #99,d7 ;check if lower then 100
 bls showdec ;if so branch to showdec
 move.b #1,d3 ;if not set d3 flag to 1
showdec move.w d7,d6 ;copy string into register D6
 move.w #100,d5 ;store 100 devisor
 bsr dodigit ;branch to dividing algorithm
 move.w #10,d5 ;store 10 devisor
 bsr dodigit ;branch to dividing algorithm
 move.b d6,d1 ;copy d6 into d1
 addi.b #$30,d1 ;add ASCII bias
 bsr delay ;send to screen with delay
reset movea.l #$18000,a0 ;set operation mode for L CD
 move.b d2,d0 ;move LCD start add into LCD mem.
 bsr delay ;send to screen with delay
 bra read ;return to main function
dodigit andi.l #$ffff,d6 ;clear upper word of d6
 divu d5,d6 ;divide string by devisor
 move.b d6,d1 ;copy d6 into d1
 addi.b #$30,d1 ;add ASCII bias of $30h
 cmp.b #1,d3 ;check d3 flag
 beq do ;If equal branch to send char
 cmp.b #$30,d1 ;if not equal send go to do
 bne do

 move.b #$80,d0 ;send blank space to screen
 bsr delay ;send with delay
 bra do2 ;go to do2 procedure
do move.b d1,d0 ;send to screen
 bsr delay ;with appropriate delay
do2 swap d6 ;get remainder
 rts ;return to original routine

If traced through properly you will find that the a bove algorithm takes
up to any 3 digit number, separates each character to send to the
screen separately, removes any most significant ‘0’ characters, and
resets the cursor to a start position. This start p osition is different
for every sensor string. For example, the start pos ition for the
following string: “The number is=xxx” is address 14 . The string “The
xxx is right” has a start position of 4. It is vita l that the cursor
return to the proper start position or the LCD disp lay will not
function properly.

Assembly Program: Reading Individual Sensors

 The code to read from each sensor and output the proper data is vital to the
operation of our project. Each sensor has its own data so to speak. To illustrate this
consider this chart:

Sensor
input

Data from
$18000

1 000
2 001
3 010
4 011
5 100
6 101
7 110
8 111

Because such data exists it is possible to check the data from $18000h and perform an
address jump that corresponds to a subroutine that contains the data processing for each
sensor. The code for this is shown below:
read1 move.b $18000,d7 ;store data from 18000 into register d7
 move.b d7,d0 ;copy d7 into d0
 addi.b #1,d0 ;adds one to d0 (for the next sensor)
 move.b d0,$28000 ;writes this to the latch
 movea.l #$18002,a0 ;changes to character write mode
 movea.l #$8300,a6 ;address index into a6
 mulu.w #$4,d7 ;multiply by 4 compensates for 4byte long instr.
 adda.l d7,a6 ;adds address d7 to index
 jmp (a6) ;jumps to index

org $8300
 bra tps ;once the jump is made
 bra map ;the branch to separate subrountines
 bra temp1 ;to handle processing/LCD info can be made
 bra temp2
 bra o2
 bra iat
 bra null
 bra rand

Once the jump has been made the processing/retrieving characters to send to the
screen is trivial. How this is done is shown in the main program.

Assembly Program: Processing Data

 Raw data from the sensor output or potentiometers must be processed into
information that can be comprehended by humans. In order to do this a sensor
characteristic must be found, and the math processing must be done to approximate this
characteristic. Below is an example taken from the code that processes the TPS sensor.

tps movea.l #tpsd,a3 ;sets address for TPS character info into a3
 movea.l #tpsa,a4 ;sets address for TPS math processing
 move.b #8,d3 ;sets the amount of characters initially written LCD
 move.b #$84,d2 ;sets return address of cursor
 bra loop ;branches to character retrieving/send algorithm
tpsa move.b #$FF,d1 ;approximation of sensor char performed on d7
 sub.b d7,d1
 mulu.w #$6,d1
 divu #17,d1
 move.b d1,d7
 andi.l #$ff,d7 ;clear everything but lower byte of d7
 bra go ;branches to BCD algorithm

loop move.b (a3)+,d0 ;fetches TPS characters
 bsr delayl ;branches to a delay routine
 subq.b #1,d3 ;loop decriment
 bne loop
 bra reset ;LCD address reset routine
error move.b #$45,d0 ;if there is an error
 bsr delayl ;this routine will be called
 move.b #$72,d0 ;and type ‘Err’ to screen
 bsr delayl
 move.b #$72,d0
 bsr delayl
 bra reset ;LCD address reset routine

org $8350
tpsd dc.b 'TPS=',$80,$80,$80,$df ;here is the location for TPS char info

The above subroutines are what handle character fetch, send, delay, reset, and

processing of the signal into useable data. Subroutines “loop”, and “error” are universal
for all the sensors, subroutine “loop” fetches the characters and sends them to the screen,
“error” notifies the user of a sensor error. Subroutine “tpsa” handles the math, subroutine
“tps” handles setting certain flags used for fetching characters and resetting the cursor.

Assembly Program: Program Flow

To someone that is unfamiliar with assembly language code, it would be difficult
for them to understand the program flow of our final program. The program structure is
as follows:

1. Initialization routine to clear LCD display
2. Read from the latch to determine which sensor is being accessed
3. Write to latch for the next sensor to be accessed after the reset press
4. Branch to subroutine that handles the sensor being accessed
5. Set flags such as character fetch data, and cursor reset information
6. Write characters for the current sensor to the screen i.e. “TPS=xxx Degrees”
7. Read information from analog-digital converter for the current sensor
8. Process information into useable data using sensor characteristics
9. Perform the BCD algorithm/MSB zero deletion algorithm
10. Go to step 7

Additional Rules:

• Any information/initialization data send to the LCD screen must be
accompanied with a delay.

• The program, when executed, is infinite, it doesn’t stop until the reset
button is pressed.

• When the reset button is pressed the program returns to step 1 of the basic
program flow.

Assembly Program: Final Assembly Code

 Below is the fully commented final assembly code used on the SBC through serial
port communication.

 org $8000 ;start at address $8000
init lea tps,a3 ;sets a3 address
 movea.l #$18000,a0 ;RS=0
 movea.l #$20000,a1 ;sets ADC to address register
 move.b #4,d2 ;loop size
init2 move.b #$30,d0 ;initialization
 bsr delay ;delay
 subq.b #1,d2 ;loop decrementer
 bne init2
 move.b #$01, d0 ;initialization
 bsr delay ;delay
 bsr delay2 ;added delay for clear
 move.b #$0E,d0 ;initialization
 bsr delay ;delay
 move.b #$0C,d0 ;initialization
 bsr delay ;delay
 bra read1 ; ;branch to next part of program
delay2 move.w #$FFFF,d1 ;delay functions
 move.w #$FFFF,d2
delay3 subq.w #1,d2
 bne delay3
delay4 subq.w #1,d2
 bne delay4
 rts
;************************************
;************************************
read1 move.b $18000,d7 ;move from latch into d7
 move.b d7,d0 ;copy into d0
 addi.b #1,d0 ;add 1 to d0
 move.b d0,$28000 ;send next sensor info to latch
 movea.l #$18002,a0 ;character write mode
 movea.l #$8300,a6 ;set address index
 mulu.w #$4,d7 ;multiply to compensate for 4byte opcode size
 adda.l d7,a6 ;adds address index and compensation
 jmp (a6) ;jump to address of sensor

tps movea.l #tpsd,a3 ;move data location into a3
 movea.l #tpsa,a4 ;move algorithm info to a4
 move.b #8,d3 ;character retrevial amount
 move.b #$84,d2 ;LCD cursor reset

 bra loop ;branch to fetch/write char to screen
tpsa move.b #$FF,d1 ;math approximation code
 sub.b d7,d1
 mulu.w #$6,d1
 divu #17,d1
 move.b d1,d7
 andi.l #$ff,d7 ;leaves lower byte intact
 bra go

map movea.l #mapd,a3 ;move data location into a3
 movea.l #mapa,a4 ;move algorithm location to a4
 move.b #15,d3 ;character retreval amount
 move.b #$84,d2 ;LCD cursor reset
 bra loop ;branch to fetch/write char to screen

mapa cmp.b #$99,d7 ;check for error
 bhi error
 move.b #$99,d1 ;math approximation code
 sub.b d7,d1
 move.b d1,d7
 divu #$6,d7
 andi.l #$ff,d7 ;leaves lower byte intact
 bra go

temp1 movea.l #temp1d,a3 ;move data location into a3
 movea.l #temp1a,a4 ;move algorithm location to a4
 move.b #19,d3 ;character retreval amount
 move.b #$8e,d2 ;LCD cursor reset
 bra loop ;branch to fetch/write char to screen
temp1a move.b #$FF,d1 ;math approximation code
 sub.b d7,d1
 move.b d1,d7
 divu #$2,d7
 andi.l #$ff,d7 ;leaves lower byte intact
 bra go

temp2 movea.l #temp2d,a3 ;move data location into a3
 movea.l #temp1a,a4 ;move algorithm location to a4
 move.b #18,d3 ;character retreval amount
 move.b #$8d,d2 ;LCD cursor reset
 bra loop ;branch to fetch/write char to screen

o2 movea.l #o2d,a3 ;move data location into a3
 movea.l #o2a,a4 ;move algorithm location to a4
 move.b #19,d3 ;character retreval amount
 move.b #$8f,d2 ;LCD cursor reset

 bra loop ;branch to fetch/write char to screen

o2a mulu.w #100,d7 ;math approximation code
 divu #$FF,d7
 andi.l #$ff,d7 ;leaves lower byte intact
 bra go

iat movea.l #iatd,a3 ;move data location into a3
 movea.l #temp1a,a4 ;move algorithm location to a4
 move.b #20,d3 ;character retreval amount
 move.b #$8f,d2 ;LCD cursor reset
 bra loop ;branch to fetch/write char to screen

null movea.l #nulld,a3 ;move data location into a3
 movea.l #nulla,a4 ;move algorithm location to a4
 move.b #19,d3 ;character retreval amount
 move.b #$93,d2 ;LCD cursor reset
 bra loop ;branch to fetch/write char to screen
nulla bra stop ;stop program because of no sensor

rand movea.l #randd,a3 ;move data location into a3
 movea.l #randa,a4 ;move algorithm location to a4
 move.b #20,d3 ;character retreval amount
 move.b #$91,d2 ;LCD cursor reset
 bra loop ;branch to fetch/write char to screen
randa bra go

loop move.b (a3)+,d0 ;fetches next character from a3
 bsr delayl ;writes char to screen w/ delay
 subq.b #1,d3 ;loop decrementer
 bne loop
 bra reset ;cursor reset
error move.b #$45,d0 ;subroutine writes Err to screen
 bsr delayl ;with delay
 move.b #$72,d0
 bsr delayl
 move.b #$72,d0
 bsr delayl
 bra reset
read clr.b d3 ;resets d3
 movea.l #$18002,a0 ;character write mode
 move.b (a1),d7 ;moves data from ADC to data register
 jmp (a4) ;jumps to current sensor data processing
go cmp.b #99,d7 ;check if lower then 100
 bls showdec ;if so branch to showdec
 move.b #1,d3 ;if not set d3 flag to 1

showdecmove.w d7,d6 ;copy string into register D6
 move.w #100,d5 ;store 100 devisor
 bsr dodigit ;branch to dividing algorithm
 move.w #10,d5 ;store 10 devisor
 bsr dodigit ;branch to dividing algorithm
 move.b d6,d1 ;copy d6 into d1
 addi.b #$30,d1 ;add ASCII bias
 bsr delay ;send to screen with delay
reset movea.l #$18000,a0 ;set operation mode for LCD
 move.b d2,d0 ;move LCD start add into LCD mem.
 bsr delay ;send to screen with delay
 bra read ;return to main function
dodigit andi.l #$ffff,d6 ;clear upper word of d6
 divu d5,d6 ;divide string by devisor
 move.b d6,d1 ;copy d6 into d1
 addi.b #$30,d1 ;add ASCII bias of $30h
 cmp.b #1,d3 ;check d3 flag
 beq do ;If equal branch to send char
 cmp.b #$30,d1 ;if not equal send go to do
 bne do
 move.b #$80,d0 ;send blank space to screen
 bsr delay ;send with delay
 bra do2 ;go to do2 procedure
do move.b d1,d0 ;send to screen
 bsr delay ;with appropriate delay
do2 swap d6 ;get remainder
 rts ;return to original routine

delay move.b #6,d1 ;delay rountines
delay1 move.b d0,(a0)
 subq.b #1,d1
 bne delay1
 rts
delayl move.b #13,d1
 move.b d0, (a0)
delayl2 subq.b #1,d1
 bne delayl2
 rts
 org $8300
 bra map
 bra temp1
 bra temp2
 bra o2
 bra iat
 bra null
 bra rand

stop trap #9
 org $8350
tpsd dc.b 'TPS=',$80,$80,$80,$df ;data
mapd dc.b 'MAP=',$80,$80,$80,' in. Hg.'
temp1ddc.b 'Cyl.Head Temp=',$80,$80,$80,$df,'C'
temp2ddc.b 'Coolant Temp=',$80,$80,$80,$df,'C'
o2d dc.b 'EGR Valve Lift=',$80,$80,$80,'%'
iatd dc.b 'Intake AirTemp=',$80,$80,$80,$df,'C'
nulld dc.b 'No Sensor Available'
randd dc.b 'Test of 8bit ADC=',$80,$80,$80
 end init

PC Program

 This program communicates with the SBC through the serial port. In the
assembly program we will declare a3 as the address for the serial port. With our SBC,
the address is $10000. Then whenever we read from the potentiometer, we will send the
data to the serial port as well as the LCD. We use this code:

 move.b d7, a3 ;moves the data in d7 to the serial port

At this point, everything is happening at the PC end. First we needed to create a form
and load in the MSComm32.OCX component. This component allows serial
communication through com port 1. The program is written in Visual Basic 5. We
picked an easy programmable language to get a good visual of what is happening from
the sensor. In the SBC, the Intel 8251 UART is sending data at a 38400 baud rate. In the
program, we set the Com Port to 8-bit, no parity, no handshaking, and 38400 baud rate,
with a stop bit of 1.

MSComm1.Settings = "38400,N,8,1" 'sets the baud rate, parity bit, bit size and
 'stop bit
MSComm1.Handshaking = comNone 'no handshaking of port

 Then we had to set the length of the buffer, and the mode at which to send. Since
we are going to be receiving binary data, the mode has to be set to binary. As
information is sent through the serial port, a buffer stores the data until the user of the
program asks for it. by setting the length of the buffer to zero, the program will read all
data in the buffer. These commands set these options:

MSComm1.InputLen = 0 'sets length of buffer to 0
MSComm1.InputMode = comInputModeBinary 'sets to read binary
MSComm1.NullDiscard = False 'accepts binary "0"
MSComm1.DTREnable = True 'sets the data terminal ready to true

 Once everything is initialized, the port can be opened. When the port is opened,
the PC will now be receiving whatever data is being sent. This data may be coming to
the port incorrectly due to non-synchronization. Once the reset button is hit, however,
the data should be sending correctly. Once the data is received, the PC must convert the
8-bit data into useful information. We need the data converted to a number. This is the
operations needed to do so:

Select Case MSComm1.CommEvent
 Case comEvReceive 'redefines the size of buffer then

txtSensor.Text = ""
 ReDim InBuffer(MSComm1.InBufferCount)

 ReceiveBits 'reads the bits from the port
 Case comEventRxOver 'redefines the size of buffer if
 ReDim InBuffer(MSComm1.InBufferCount) 'the buffer starts to overflow
End Select

If MSComm1.InBufferCount = 0 Then 'checks for data in buffer and displays if not
 txtSensor.Text = "No Data in Buffer"
InBuffer = MSComm1.Input 'pulls data from buffer
For i = 0 To UBound(InBuffer) 'takes upper bounds of buffer
 message = Chr$(InBuffer(i) + 30) 'and puts it in a string
Next i
txtSensor.Text = "Sensor Reading= " & message 'writes message to text box

 The Chr$ is the line that takes the 8 bits and converts it to a character string.
Since we need a number, we need to add $30 to the binary number to gets the correct
ASCII character string we need. Below is an ASCII chart to see how it converts from
binary to the character needed (taken from Professor Rosenstark’s ECE 252
Supplemental Notes):

 Once the PC has the correct character, which in this case is a number, we can
generate a scope view. Below is the code to have the data received from the SBC
transformed into graphical data:

iLow = iHigh + iDelta 'Low Scope Trace Value
LabelOffSet = Index * 35 'One Control Array For All Ports (offset accordingly)
picScope.Refresh 'Clear The Scope Display
hPic = shpScope.hDC 'Get The Handle of The Scope Display Picture Box
iBytes = UBound(nScope) 'No Of Bytes In The Data Array To Display

iZ = 0

With PortSet 'Count The Additional Bits From The Ports Settings
 If .Parity <> "n" Then
 iZ = 1
 bChkParity = True
 End If
 iBits = CLng(.DataBits) 'Number Of Bits To Display From Port
 'Settings
 iStop = CLng(.StopBits) 'Number Of Stop Bits To Add
 iZ = iZ + iBits + iStop 'Sum Stop,Parity, and Data Bits
End With

iBitCount = (iZ * (iBytes + 1)) + (iBytes + 1)
ReDim bTrace(iBitCount - 1) 'Trace Array One less than Total BitCount
 ' (array index)
 iZ = 0
For iX = 0 To iBytes 'Max iBytes is 3 (Four Byte Trace)
 bTrace(iZ) = True 'Start Bit
 lblScope1(iZ + LabelOffSet).Caption = sStartBitLabel
 iZ = iZ + 1
 iOnBits = 0 'Zero Count For On Bits To Check Parity
 For iY = 1 To iBits 'Parse Each Data Bit
 bOn = BitOn(Data(iX), iY)
 iOnBits = Abs(bOn) + iOnBits
 bTrace(iZ) = Not bOn 'Invert as Negative Voltage on Scope is
 'Logical True
 lblScope1(iZ + LabelOffSet).Caption = CStr(iY - 1)
 iZ = iZ + 1
 Next
 If bChkParity Then 'True For All But Parity Setting Of "None"
 Select Case PortSet.Parity
 Case "e" 'Even Parity
 If iOnBits Mod 2 Then 'OnBits is Odd Parity Bit Is On
 bTrace(iZ) = False
 Else
 bTrace(iZ) = True 'OnBits is Even Parity Bit Is Off
 End If
 Case "o" 'Odd Parity
 If iOnBits Mod 2 Then 'OnBits is Odd Parity Bit Is Off
 bTrace(iZ) = True
 Else
 bTrace(iZ) = False 'OnBits is Even Parity Bit Is On
 End If
 Case "m" 'Mark Parity Bit is Always On
 bTrace(iZ) = False

 Case "s"
 bTrace(iZ) = True 'Space Parity Bit is Always Off
 End Select
 lblScope1(iZ + LabelOffSet).Caption = sParityBitLabel
 iZ = iZ + 1
 End If

'Set The Scope Trace Stop Bits
If iStop = 1 Then 'One Stop Bit
 bTrace(iZ) = False 'Stop Bit
 lblScope1(iZ + LabelOffSet).Caption = sStopBitLabel
 iZ = iZ + 1
Else 'Two Stop Bits
 bTrace(iZ) = False 'Stop Bit
 lblScope1(iZ + LabelOffSet).Caption = sStopBitLabel
 bTrace(iZ + 1) = False 'Stop Bit
 lblScope1(iZ + LabelOffSet + 1).Caption = sStopBitLabel
 iZ = iZ + 2
End If
Next

'Get The Proper Scope Trace To Match The Background Color
iTraceColor = typDisplayColor.Trace
iBits = 0 'Zero The Bit Count Index
bOn = bTrace(iBits) 'Parse The Trace Array And Draw on Scope Display
For iX = 1 To picScope.ScaleWidth 'X Coordinate
 iY = iLow - (Abs(bOn) * iDelta) 'Y Coordinate
Do While iX Mod iPW 'Draw Horizontal Line To The Pulse Width
 SetPixel hPic, iX, iY, iTraceColor
 iX = iX + 1
Loop
If iBits < UBound(bTrace) Then 'Check For End Of Trace
 If bTrace(iBits) <> bTrace(iBits + 1) Then 'Check To See If Next Bit Has
 'Changed State
 For iY = iHigh To iLow 'Next Bit Change In State Draw
 'Vertical Line
 SetPixel hPic, iX, iY, iTraceColor
 Next
 End If
 iBits = iBits + 1 'Get The Next Bit
 bOn = bTrace(iBits)
Else 'End Of Trace Data Set The Stop Bit
 iX = iX + 1 'Skip a Bit for the Stop Bit
 iBits = iBits + 1 + LabelOffSet
 Exit For
End If

Next

Do While iX < picScope.ScaleWidth 'Run The Scope Trace Out
 SetPixel hPic, iX, iLow, iTraceColor
 iX = iX + 1
Loop
 For iX = iBits To LabelOffSet + 47 'Set The Remaining Scope Label Captions
 lblScope1(iX).Caption = "-"
 Next

 These are the basic functions needed to have the SBC communicate with the PC.
The scope is the feature in the PC program that further analyses the sensors from the
vehicle. The whole program can be found in the programming section of the report.

Visual Basic Program: Screen Shots
Below are several preliminary screenshots of the visual basic program we created:

Conclusion:

 Designing and implementing our project was a very challenging process. Design

methods that did not work had to be scrapped. Using new hardware such as LCD

displays, and Analog to Digital converters involved a learning curve that required a lot of

time to master. For example, the first LCD screen we ordered was defective. Unsure of

our own understanding and methods to work the screen plagued us until enough testing

had gone by when we finally had no doubt the LCD screen was faulty. Designing the

sensor scroll feature was also met with difficulty. After several different attempts at using

different hardware failed, the idea of using a latch to store next sensor states proved

successful.

 Even software design proved to be a difficult endeavor that required a good

understanding of the Motorola 68k Series Instruction Set Architecture. In addition to the

syntax, programming structures such as loops, conditions, branches, subroutines, and data

flow all had to be mastered. Software design in VB is a little less tedious then that on the

assembly level but still a major pain nonetheless, and there are still bugs in this software

that would take months to massage out.

 In addition to learning from the problems, we also learned a bit on structured

design. By using structured design it is possible to tackle one design problem at a time

rather then a host of design problems that would be difficult or impossible to debug

effectively. Overall this project was a huge success because we had high goals, and met

them through hard-work. The end result is a smoothly running system that is a valuable

asset to any technician or car junkie wishing to diagnose a problem resulting in poor

drivability, low fuel economy, and failed emissions tests.

		2004-12-15T12:51:29-0500
	Jonathan Johnston

